Art. nr. 927

Oktober 1999

200

Prof. ir. W.J. Beranek

KRACHTSWERKING Deel 2 LIGGERS

FACULTEIT DER BOUWKUNDE Leerstoel Krachtswerking

1902000927

KRACHTSWERKING Deel 2 LIGGERS

Krachtsoverdracht via buigende momenten

Analytische en grafische methoden

Prof. ir. W.J. Beranek

KRACHTSWERKING Deel 2 LIGGERS Krachtsoverdracht via buigende momenten Oktober 1999 [201 - 205] + [200 - 299] + Trefwoordenlijst T-01 / T-08

Dit is een herziene uitgave van KRACHTSWERKING 1 deel 1: Augustus 1989 [124-163] en deel 2: September 1989 [164-211]

. .---

201		HOOFDSTUK-INDELING
205		LIJST VAN SYMBOLEN
200	11	INLEIDING Lineaire buigstijve constructie-elementen; liggers en staven
200	$\begin{array}{c}11.1\\11.1\end{array}$	ALGEMEEN Krachtswerking
202 203	$ 11.1.1 \\ 11.1.2 \\ 11.1.3 $	Definitie van enkele constructie-onderdelen Namen van constructies
204 205 206 207 208 209	11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6	HOOFDVORMEN STATISCH BEPAALDE LIGGERS Statisch bepaald versus statisch onbepaald Berekening van statisch onbepaalde liggers Vrij opgelegde ligger Eenzijdig ingeklemde ligger Invloed van de ligging van de oplegreacties Volledige inklemming
210	11.3 11.3.1 11.3.2	ANDERE ONDERSTEUNINGS-WIJZEN Liggers over meer steunpunten Liggers ondersteund door pendelstjilen
212 213	11.3.3 11.3.4	Bepaling oplegreacties Belastingafdracht
214	11.4 11.4.1	BEREKENINGS-METHODEN Actie- en reactie-krachten Snada mathada
215	$11.4.2 \\ 11.4.3 \\ 11.4.4 \\ 11.4.5$	Integratie Superpositie Grafische methode

201

INHOUDSOPGAVE Hoofdstuk 12

216	12	SNEDE-METHODE
		Bepaling van de krachtswerking in liggers
		met hehuln van de snede-methode
		mer vennip van de snede memode
216	12.1	KRACHTSWERKING IN EEN NORMALE DOORSNEDE
	12.1.1	Algemeen
	12.1.2	Teken van de reactiekrachten
218	12.1.3	Definitie snedekrachten $N - V - M$
219	12.1.4	Oplegreacties bij een vrij opgelegde ligger
220	12.1.5	Principe snede-methode
222	12.1.6	Snede-methode: formele aanpak
224	12.1.7	Teken van de snede-krachten
225	12.1.8	Eénzijdig ingeklemde ligger
		<i>j č č č</i>
226	12.2	DIAGRAMMEN VOOR DE SNEDE-KRACHTEN
		Vrij opgelegde liggers, belast door puntlasten
	12.2.1	Algemeen
	12.2.2	Rekenprocedure
227	12.2.3	Snede-methode; praktische aanpak
228	12.2.4	Ligger belast door een puntlast
230	12.2.5	Ligger belast door een aantal puntlasten
232	12.2.6	Ligger met overstek Berekening door superpositie
234	12.2.7	Ligger met overstek Rechtstreekse berekening
236	12.2.8	Verwisselbaarheid van actie- en reactiekrachten
237	12.2.9	Vervormingen
		-
238	12.3	DIAGRAMMEN VOOR DE SNEDE-KRACHTEN
		Gelijkmatig verdeeld belaste liggers
	12.3.1	Algemeen
239	12.3.2	Vrij opgelegde ligger
240	12.3.3	Eenzijdig ingeklemde ligger
241	12.3.4	Lineair variërende belasting
242	12.4	DIAGRAMMEN VOOR DE SNEDE-KRACHTEN
	122.1	Puntlasten tezamen met gelijkmatig verdeelde helastingen
	12.4.1	Procedure
244	12.4.2	Basis-helastinggevallen
246	12.4.3	Puntlast on liggers met verschillende lengte
248	12.4.4	Gedachtenmodel
249	12.1.7	Vrij ongelegde ligger met overstekken
250	12.7.5	Voorbeelden statisch hengalde liggers
JU	14.4.0	voorbeerden stansen bepaarde nggers

--~

INHOUDSOPGAVE Hoofdstuk 13

•

254	13	ALTERNATIEVE ANALYTISCHE BEREKENINGS-METHODEN Berekening van liggers door middel van Integratie en Superpositie
254	13.1	INLEIDING Overzicht berekeningsmethoden
055	12.0	
255	13.2	DIFFERENTIAAL- EN INTEGRAALREKENING Grondbeginselen
	13.2.1	Algemeen
	13.2.2	Functies
256	13.2.3	Differentie-quotient en differentiaal-quotient
258	13.2.4	Integreren
250 260	13.2.6	Bepaalde integraal
262	133	BEPALING SNEDE-KRACHTEN DOOR INTEGRATIE
202	15.5	Principe van de methode
	13.3.1	Evenwichtsbeschouwingen op een ligger-elementje
264	13.3.2	Bepaling dwarskrachten
265	13.3.3	Bepaling van de momenten
266 267	13.3.4	Extreme momenten
269	12 4	
208	13.4	Gelijkmatig verdeelde belasting
	13.4.1	Belasting over de gehele lengte van de ligger
269	13.4.2	De belasting ontbreekt op een liggerdeel
270	13.4.3	Berekening van de standaard-liggers
272	13.4.4	Controle van de maximale momenten
274	13.5	NUMERIEKE UITWERKINGEN
	13.5.1	Liggers uitsluitend belast door puntlasten
276	13.5.2	Ligger uitsluitend belast door een gelijkmatig verdeelde belasting
278	13.6	SUPERPONEREN
	13.6.1	Overzicht
279	13.6.2	Superpositie bij momenten van gelijk teken
280	13.0.3	Superpositie bij momenten van ongelijk teken
281	13.0.4	V oorbeeldell Ligger met overstek, gelijkmatig verdeeld helast
282	13.6.6	Vervanging door een basisligger op twee steunpunten
285	13.6.7	Beschouwing als afzonderlijke liggerdelen
286	13.7	VARIERENDE BELASTING
_00	13.7.1	Maximum- en minimum-momentenlijnen
287	13.7.2	Verplaatsbare puntlast
288	13.7.3	Optimaliseren
289	13.8	SAMENGESTELDE LIGGERS
	13.8.1	Doorgaande liggers met scharnieren; gelijkmatig verdeelde belasting
200	1207	Invload van de plaats van de schernieren

290 13.8.2 Invloed van de plaats van de scharnieren

INHOUDSOPGAVE Hoofdstuk 14

292 14 GRAFISCHE METHODE Bepaling van momentenlijnen met behulp van poolfiguur en stangenveelhoek

- 292 14.1 INLEIDING
- 14.1.1 Grondslag van de methode
- 292 14.2 MEETKUNDIGE AANPAK
- 14.2.1 Momentenlijn bij een uitkragende ligger
- 294 14.2.2 Momentenlijn bij een vrij opgelegde ligger
- 29514.2.3Invloed van de plaats van de opleggingen
- 296 14.3 ANALYTISCHE AANPAK
 - 14.3.1 Vergelijking gedrag van liggers en koorden
- 297 14.4 GEBRUIK VAN MODELLEN
 - 14.4.1 Algemeen
- 14.4.2 Vrij opgelegde ligger *Belasting door puntlasten*
- 298 14.4.3 Vrij opgelegde ligger Gelijkmatig verdeelde belasting
 - 14.4.4 Eenzijdig ingeklemde ligger en ligger met overstekken

LIJST VAN SYMBOLEN

kleine letters

a	versnelling	$[lt^{-2}]$
a, b, c	afstanden	[l]
\dot{b}	breedte	ĪlĪ
d	middelliin	ī <i>t</i> i
e	excentriciteit	\tilde{l}
d e f	afstanden	
σ	versnelling zwaartekracht	$[lt^{-2}]$
8 h	hooste	[1]
	100510	[,]
k	veerstijfheid (veerconstante)	$[kl^{-1}]$
λ 1	lengte oversnanning	$\begin{bmatrix} n \\ l \\$
เ m	massa	$\begin{bmatrix} n \end{bmatrix}$
n n	aantal	[1]
n n	kracht per oppervlakte	$[k_{1}^{-2}]$
P	kracht per lengte	$[k_{l}]{}^{(k_{l})}$
y r	straal	$\begin{bmatrix} \kappa \iota \\ I \end{bmatrix}$
/	Straat	[י]
4	4:14	[<i>+</i>]
I A		
T	dikte	
и	verplaatsing	$\begin{bmatrix} l \end{bmatrix}$
ν	snelheid	
		г <i>1</i> т
W	doorduiging	
<i>x</i> , <i>y</i> , <i>z</i>	lengte-coordinaten	
Ζ.	hetboomsarm	

Griekse lettertekens

α, β, γ	hoeken	[1]
α	lineaire uitzettingscoefficient	$[T^{-1}]$
γ	kracht per volume	$[kl^{-3}]$
ε	rek, relatieve vervorming	[1]
μ	wrijvings-coëfficiënt	[1]
v	contractie-coëfficiënt	[1]
ρ	massa per volume	$[ml^{-3}]$
σ	(normaal)spanning	$[kl^{-2}]$
au	schuifspanning	$[kl^{-2}]$
φ	hoek	[1]
$\dot{\phi}$	rotatie	[1]
ψ	reductiefactor	[1]

HOOFDLETTERS

~

A	oppervlakte	[<i>l</i> ²]
C	constante	[1]
E	elasticiteitsmodulus	[k l ⁻²]
F	uitwendige kracht	[k]
I	kwadr. oppervlaktemoment	[l ⁴]
K	uitwendig moment, koppel	[kl]
L	totale lengte	[l]
M	buigend moment	[kl]
N	normaalkracht	[k]
R	reactiekracht	[k]
R	kromtestraal	[l]
S	lineair oppervlaktemoment	[l ³]
S	staafkracht	[k]
V V V W	volume, inhoud dwarskracht weerstandsmoment	$\begin{bmatrix} l^3 \end{bmatrix} \\ \begin{bmatrix} k \end{bmatrix} \\ \begin{bmatrix} l^3 \end{bmatrix}$

Indices

v, V	verticaal	richting
h, H	horizontaal	
l, r	links, rechts	
max	maximum	krachten
min	minimum	
extr	extremum	
repr	representatief	belasting
mom	momentaan	

Eenheid

Dimensie

[m]	massa	kg	
[l]	lengte	m	mm
[t]	tijd	S	
$\begin{bmatrix} k \end{bmatrix}$	kracht	kN	Ν
$\bar{[T]}$	temperatuur	° C	

11 INLEIDING

Lineaire buigstijve constructie-elementen: liggers en staven

11.1 ALGEMEEN

11.1.1 KRACHTSWERKING

Lijnvormige buigstijve constructie-onderdelen, zoals balken en kolommen, komen veel voor in de bouw. De krachtswerking is met elementaire middelen vrij gemakkelijk te achterhalen. Vlakke buigstijve constructie-onderdelen daarentegen, zoals wanden en vloeren, zijn in het algemeen veel moeilijker toegankelijk voor een berekening. Maar ook hier kan in vele gevallen eenzelfde aanpak worden gevolgd als voor lijnvormige constructie-onderdelen.

Om begrip te krijgen voor de krachtswerking in liggers en staven [202] en om de resultaten van computer-berekeningen globaal te kunnen interpreteren, dient de student enige vaardigheid te bezitten in het zelf oplossen van eenvoudige vraagstukken. In hoofdstuk 12 wordt daartoe de aanzet gegeven. Er worden uitsluitend statisch bepaald opgelegde liggers behandeld, waarbij de drie evenwichtsvoorwaarden dus voldoende zijn om de oplegreacties te bepalen. We gaan er hierbij vanuit dat zowel de overspanning als de belasting van een ligger bekend zijn. De ligger met zijn opleggingen en de belasting worden schematisch weergegeven. Pas in KW-7 wordt de verkregen kennis toegepast om de benodigde dwarsdoorsnede van liggers te bepalen voor een nog te bouwen constructie.

In KW-0 zijn de oplegreacties bepaald van driedimensionale blokvormige constructie-onderdelen onder invloed van verticale en horizontale belastingen. Over de wijze waarop het onderdeel de uitwendige krachten 'binnenin' naar de opleggingen overbrengt, hebben we ons dáár nog geen ogenblik zorgen gemaakt. In alle gebouwen rondom ons heen, gebeurt dit immers vanzelf. Dit is een misvatting. Het *lijkt* alleen maar vanzelf te gebeuren. Als deze gebouwen niet zorgvuldig zouden zijn berekend en geconstrueerd, zouden er veel meer instortingen en andere schadegevallen optreden. In ontwikkelingslanden komt het soms voor dat een paar verdiepingen op een bestaand gebouw worden bijgebouwd, met als gevolg dat de gehele zaak instort. We hebben in KW-0 gesteld dat er een zekere marge moet bestaan tussen de optredende belasting en de bezwijkbelasting. Die marge kan niet onbeperkt worden verminderd.

We zouden de constructie natuurlijk veel en veel sterker kunnen maken, zodat er bijna niets kan gebeuren. Dit verhoogt de kosten echter zodanig dat zo'n gebouw niet meer concurrerend is. De constructeur heeft dus een verantwoordelijke en moeilijke taak. In eerste instantie is hij aansprakelijk voor calamiteiten, tenzij hij kan aantonen dat de fouten niet in het ontwerp liggen maar in de uitvoering.

In de berekening van een constructie is het nodig dat in elk onderdeel van de constructie wordt nagegaan welke krachten daar ter plaatse worden overgedragen. Elk constructie-onderdeel dat in rust is, moet in evenwicht zijn. Aangezien elk stukje van zo'n onderdeel ook in rust is, moet het evenwicht op elke willekeurige plaats zijn verzekerd. Als we het onderdeel daar ter plaatse als het ware in tweeën snijden dan hebben we twee afzonderlijke stukken die elk in evenwicht moeten zijn, uiteraard mede onder invloed van de krachten die de onderdelen *op elkaar* uitoefenen.

Dat betekent dat we met behulp van de evenwichtsvoorwaarden vrij gemakkelijk kunnen bepalen welke krachten er in de beschouwde snede op elk deel moeten werken.

Het beginsel *actie* = *reactie* leert ons dan dat deze zgn. snedekrachten paarsgewijs moeten optreden; aan elkaar gelijk moeten zijn en tegengesteld gericht. De grootte en het verloop van de snedekrachten over de lengte van een ligger of een staaf, blijkt essentieel te zijn voor het bepalen van de benodigde afmetingen van de dwarsdoorsnede.

(O. Dicke)

11.1.2 DEFINITIE VAN ENKELE CONSTRUCTIE-ONDERDELEN

Lijnvormige constructie-onderdelen zoals balken en kolommen, worden in mechanica-termen met benamingen aangeduid die afwijken van het normale spraakgebruik.

Ligger:

Een ligger – de naam zegt het al – ligt meestal horizontaal. Het constructie-onderdeel is aan één of twee zijden ondersteund en ondergaat een belasting die loodrecht op de liggeras staat. Bij horizontale liggers werkt de belasting dus in de meeste gevallen verticaal, zie fig. 1a.

Een kolom onder horizontale belasting is eveneens als een (uitkragende) ligger te beschouwen, maar dan een kwart slag gedraaid, zie fig. 1b.

Staaf:

Het constructie-onderdeel is aan één of twee zijden ondersteund en ondergaat uitsluitend een belasting die langs de staafas valt, zie fig. 1c. Hieronder vallen dus alle pendelstijlen, maar ook kolommen waarop alleen verticale krachten werken (zowel uitwendige krachten als het eigen gewicht), zie fig. 1d.

Stijl en regel:

Indien de verticale en de horizontale onderdelen buigstijf met elkaar zijn verbonden, worden de verticale onderdelen als stijlen aangeduid en de horizontale als regels, zie fig. 2.

De krachten kunnen zowel loodrecht op de assen werken als in de richting van de assen.

De krachtswerking in dit soort constructies komt heel globaal aan de orde in KW-3 en veel uitvoeriger in KW-5 en KW-6. In dergelijke berekeningen worden alle elementen meestal aangeduid als *staven*.

Fig. 1 Lijnvormige constructie-onderdelen

- a. b. Liggers met belasting loodrecht op de staafas
- c. d. Staven met belasting langs de staafas
- a. c. aan twee zijden ondersteund
- b. d. aan één zijde volledig ingeklemd

Fig. 2 Portaal met stijlen en regel (twee-scharnierspant)

Om de (buig)stijve verbinding in de hoekpunten te benadrukken, worden hier soms zwarte driehoekjes ingetekend, zoals in bovenstaande figuur

3

11.1.3 NAMEN VAN CONSTRUCTIES

Veel constructies zijn samengesteld uit lijnvormige onderdelen en dragen, afhankelijk van de vorm, een bepaalde naam.

Zo worden de constructies die zijn weergegeven in de figuren 2 en 3 aangeduid als *portaal*.

Het woord *portaal* houdt in dat de regel (min of meer) horizontaal loopt, het woord *spant* geeft aan dat de constructie dient ter ondersteuning van het dak.

Indien de bovenregel door meer dan twee stijlen wordt ondersteund, spreekt men van een meerbeukig portaal, zie fig. 3b.

De constructie van fig. 3c wordt uitsluitend voor hallen gebruikt. De mechanica-benaming is drie-scharnierspant. Ontbreekt het scharnier in de top dan noemen we het een twee-scharnierspant, zie ook fig. 2.

Een samenstel van stijlen en regels dat uit twee of meer verdiepingen bestaat wordt *raamwerk* genoemd, zie fig. 4.

Bij portalen en raamwerken is het vrij gebruikelijk om een horizontaal of verticaal onderdeel uit het grote geheel te lichten en als een afzonderlijk deel nader te beschouwen. Dit is toegestaan als op de einden van dat onderdeel de krachten worden aangebracht die de aansluitingen voordien daarop uitoefenden, zie fig. 4b.

Vakwerken zijn opgebouwd uit vormvaste driehoeken en hebben veelal een overspannende functie, maar soms alleen een verstijvende, zie KW-3. Indien boven- en onderregel evenwijdig zijn, spreken we van een vakwerkligger; fig. 5a. Een houten vakwerkje ter ondersteuning van het schuine dak van een huis zal men meestal als een spant aanduiden, zie fig. 5b. De samenstellende delen van een vakwerk kunnen in de berekening met goede benadering worden beschouwd als staven waarin uitsluitend krachten langs de staafassen werken. Hiertoe wordt aangenomen dat alle staven scharnierend met elkaar zijn verbonden, zie fig. 5c. Verder worden alle belastingen geconcentreerd gedacht in de knooppunten.

Fig. 3 Vormen van portalen

- a. Eénbeukig portaal
- b. Driebeukig portaal
- c. Driescharnierspant

a. Schema

b. Geïsoleerde regel beschouwd als ligger

Fig. 5 Vakwerken

- a Vakwerkligger
- b Vakwerkspant
- c. Schematisering voor de berekening met scharnierende verbindingen

11.2.1 STATISCH BEPAALD VERSUS STATISCH ONBEPAALD

Een ligger in het platte vlak is *statisch bepaald* opgelegd, als met behulp van de drie evenwichtsvoorwaarden uit KW-0 [034-(3a,b,c) of (4a,b,c)], de oplegreacties kunnen worden bepaald.

Basisvormen zijn de ligger op twee steunpunten (scharnier + rol) en de eenzijdig ingeklemde ligger. Bij elke ligger zijn er juist drie onbekende oplegreactie-componenten.

Een ligger is *statisch onbepaald* opgelegd indien er meer onbekende oplegreactie-componenten zijn dan evenwichtsvergelijkingen. De ontbrekende vergelijkingen moeten dan worden bepaald met behulp van de *vervormingen* van de ligger.

In fig. 1 is een aantal verschillend opgelegde liggers weergegeven. Per oplegpunt gaat men dan na hoeveel onbekende oplegreactie-componenten kunnen worden geleverd. Hierbij geldt: rol = 1; scharnier = 2; inklemming = 3. Als verder over oplegreacties wordt gesproken, dan bedoelen we steeds de eerder genoemde oplegreactie-componenten.

De som van alle onbekende oplegreacties verminderd met 3 (= het aantal evenwichtsvergelijkingen) geeft dan de graad van statisch onbepaaldheid aan. Men spreekt van één-, twee-, drie- of meervoudig statisch onbepaald.

De graad nul betekent uiteraard: statisch bepaald. Vinden we een negatief getal dan is de stabiliteit niet verzekerd. Dit kan bijv. optreden bij een ligger die door twee rollen is ondersteund [206] of bij een ligger die maar door één scharnier is ondersteund, zie fig. 1d en 2.

Gemakshalve spreken we meestal van *statisch bepaalde* liggers en *statisch onbepaalde* liggers en laten het woord 'opgelegd' maar weg.

- Fig. 1 Liggervormen (het cijfer bij elke oplegging geeft aan hoeveel oplegreactie-componenten kunnen worden overgebracht (R_x, R_y, K_z)
- a. Statisch bepaald (3-3=0)
- b. Eénvoudig statisch onbepaald (4-3 = 1)
- c. Drievoudig statisch onbepaald (6-3 = 3)

(2 - 3 = -1)

d. Instabiel (wipplank)

Fig. 2 Instabiele constructie, die door een ieder intuïtief in indifferent evenwicht kan worden gehouden

11.2.2 BEREKENING VAN STATISCH ONBEPAALDE LIGGERS

Voor de berekening van statisch onbepaalde liggers zijn vele methoden in gebruik.

Ter bepaling van de gedachte is voor een ligger op drie steunpunten uiteengezet hoe zo'n berekening kan verlopen, zie fig. 3a.

We zorgen er eerst voor dat de ligger *statisch bepaald* wordt opgelegd door één of meer oplegreacties te verwijderen. In het voorbeeld behoeft dan alleen het middensteunpunt B maar te worden weggenomen; we houden dan een vrij opgelegde ligger over, zie fig. 3b1.

Ten gevolge van de gelijkmatig verdeelde belasting q zal de ligger in punt B een doorbuiging w_1 ondergaan, zie fig. 3b2. De manier waarop dat wordt berekend, wordt behandeld in KW-5.

Om het weggenomen middensteunpunt B weer aan te kunnen brengen, moet op de ligger in punt B één enkele omhoog gerichte puntlast worden aangebracht, die zo groot is, dat hierdoor de eerstgenoemde doorbuiging w_1 juist wordt opgeheven. We kunnen de weggenomen rol dan als het ware zo weer onder de ligger schuiven zodat de rol in staat is om dezelfde kracht te leveren.

We bepalen daartoe de doorbuiging w_2 van punt B ten gevolge van een puntlast F_2 in punt B, zie fig. 3c. Als we vervolgens in plaats van de kracht F_2 omlaag, een kracht F_1 omhoog aanbrengen ter grootte: $F_1 = w_1/w_2 * F_2$, dan is de zakking w_1 ten gevolge van q juist opgeheven en is ons doel bereikt.

- Fig. 3 Berekening van een statische onbepaalde ligger
- a. Schema van de ligger op drie steunpunten
- b1 Het middensteunpunt is verwijderd
- b2 Doorbuigingslijn bij een q-last
- c1 Ligger met puntlast F_2 in het midden
- c2 Doorbuigingslijn bij een puntlast in het midden ter grootte $F_2 = 2 ql$
- d1 Ligger met de q-last omlaag gericht en een puntlast F_1 omhoog gericht
- d2 Bijbehorende doorbuigingslijn

We hebben dan een *statisch bepaalde* ligger die is belast door een neerwaarts gerichte gelijkmatig verdeelde belasting q en een opwaarts gerichte puntlast F_1 , zie fig. 3d1.

Deze ligger kan dan verder worden berekend op een van de manieren die in de volgende paragrafen worden behandeld.

De hier beschreven aanpak is voor het begrip het eenvoudigste. In KW-5 zal blijken dat een andere manier van berekenen wat sneller resultaten geeft, vooral bij de zgn. doorgaande liggers.

11.2.3 VRIJ OPGELEGDE LIGGER

Een ligger op twee steunpunten is altijd statisch bepaald opgelegd als aan één zijde een scharnier wordt aangebracht en aan de andere zijde een rol. Een dergelijke ligger wordt meestal aangeduid als een *vrij opgelegde ligger*.

De ligger mag aan één of twee zijden een overstek bezitten, zie fig. 1.

Onjuiste varianten:

I Twee rol-opleggingen (niet stabiel)

Er zijn alleen verticale belastingen mogelijk omdat niet aan het horizontale evenwicht kan worden voldaan. Bij horizontale krachten rolt de ligger gewoon weg, zie fig. 2a.

II *Twee scharnier-opleggingen* (statisch onbepaald).

Er is één reactiekracht te veel, de verdeling van de horizontale reacties over beide steunpunten kan niet worden aangegeven.

De bovenstaande onjuiste varianten hebben voornamelijk een academische betekenis. Indien alleen verticale krachten op de ligger aangrijpen maakt het voor de berekening niet uit wat we hebben aangenomen.

Als de ligger aan de onderrand aan elke zijde door een scharnier is ondersteund, kunnen – ook bij uitsluitend verticale belastingen – toch gelijke en tegengesteld gerichte horizontale reactiekrachten worden opgewekt. Dit komt omdat de genoemde punten zich ten opzichte van elkaar naar buiten willen verplaatsen ten gevolge van de doorbuiging van de ligger, zie KW-0 [099-4].

- Fig. 2 Theoretisch onjuiste varianten voor de vrij opgelegde ligger
- a. twee rolopleggingen
- b. twee scharnieropleggingen

11.2.4 EENZIJDIG INGEKLEMDE LIGGER

Een eenzijdig ingeklemde ligger is aan één zijde vast verbonden met een stijve ondersteuning. Deze is in staat om drie onbekende reactiekrachten te leveren: K_z , R_x en R_y . Men spreekt ook wel van een *uitkragende ligger*.

De ligger wordt volledig ingeklemd genoemd als ter plaatse van de inklemming geen rotatie kan optreden. Een dergelijke ligger is weergegeven in fig. 3, waarbij de belasting wordt gevormd door één puntlast F_V op het vrije uiteinde van de ligger.

Fig. 3 Volledig ingeklemde ligger

Bepaling oplegreacties (moment om punt B):

 $\sum K_z = 0: \qquad -F_V * a + K_B = 0$ $K_B = +F_V * a$ $\sum F_y = 0: \qquad +F_V - R_{BV} = 0$ $R_{BV} = +F_V$ $\sum F_x = 0: \qquad -R_{BH} = 0$ $R_{BH} = 0$

De drie benodigde reactiekrachten bij een inklemming kunnen ook worden geleverd door een roloplegging en een scharnieroplegging op korte afstand van elkaar te plaatsen, zie fig. 4. Nu kan bij punt B echter wêl een (geringe) rotatie optreden. Men noemt dit een verende inklemming. Omdat we weten dat in punt C een trekkracht zal optreden tekenen we R_{CV} alvast in de goede richting. Het inklemmingskoppel wordt nu dus geleverd door verticale reactiekrachten.

Fig. 4 Verend ingeklemde ligger

Bepaling oplegreacties (afmetingen in fig. 3):

 $\sum K_{\rm B} = 0: -F_{\rm V} * a + R_{\rm CV} * e = 0$ $\sum K_{\rm C} = 0: -F_{\rm V} * (a + e) + R_{\rm BV} * e = 0$

$$R_{\rm BV} = \frac{a+e}{e} F_{\rm V} \qquad R_{\rm CV} = \frac{a}{e} F_{\rm V}$$

Controle: $+F_V - R_{BV} + R_{CV} = 0$

De situatie van fig. 4 komt overeen met die van een duikplank. We kunnen deze beschouwen als een ligger op twee steunpunten met een groot overstek, maar we denken in eerste instantie toch aan een eenzijdig (verend) ingeklemde ligger.

11.2.5 INVLOED VAN DE LIGGING VAN DE OPLEGREACTIES

De onderlinge afstand van de rol en het scharnier is van grote invloed op de grootte van de oplegreacties. Dit spreekt vooral als de *hoogte* van de ligger in beschouwing wordt genomen en de rol en het scharnier aan de zijkant van de ligger worden geplaatst, zie fig.1a.

Let op: de rol wordt geacht zowel trek- als drukkrachten te kunnen opnemen en mag dus zowel aan de bovenkant als aan de onderkant van de ligger worden aangebracht.

Uit de evenwichtsvoorwaarden volgt: (NB de tweede of derde voorwaarde is extra)

$\sum K_{\rm B}$	= 0	$-F_{\rm V}*a + R_{\rm DH}*h$	= 0
$\sum K_{\rm D}$	= 0	$-F_{\rm V}*a+R_{\rm BH}*h$	= 0
$\sum F_x$	= 0	$+ R_{\rm DH} - R_{\rm BH}$	= 0
$\sum F_y$	= 0	$+F_{\rm V}-R_{\rm BV}$	= 0

$$R_{\rm BH} = R_{\rm DH} = \frac{a}{h} F_{\rm V} \qquad R_{\rm BV} = F_{\rm V}$$

Neem er goede nota van dat in fig. [207-4 en 5] het 'inklemmingsmoment' door twee grote verticale krachten op korte afstand wordt opgenomen. Het verschil van beide krachten maakt evenwicht met de verticale belasting F_V en is daarom in fig. [207-5] afzonderlijk getekend.

In fig. 1a wordt het inklemmingsmoment echter geleverd door twee (even) grote *horizontale* krachten op korte afstand.

Voor het uitkragende deel van de ligger zelf ter lengte *a* maakt dit niets uit, de grootte van het koppel blijft immers onveranderd.

Maar de opleggingen moeten deze krachten wel kunnen leveren.

Opgave:

Reken de voorbeelden van [207-208] na met de gegeven afmetingen en belasting van fig. 1b. De belasting van 1 kN kan bijv. veroorzaakt zijn door één persoon met een gewicht van 100 kg. In de figuren van [207 t/m 209] die op dit type ligger betrekking hebben, zijn alle krachten op dezelfde schaal getekend.

Fig. 1 Invloed van de hoogte van de ligger op de reactiekrachten

a. Rol en scharnier aan de zijkant van de ligger

b. Afmetingen van de ligger en grootte van de uitwendige kracht ter narekening door de lezer

11.2.6 VOLLEDIGE INKLEMMING

In fig. 2a is de balk als het ware vastgelijmd tegen een verticale wand. Als we de lijmlaag als een verende ondersteuning beschouwen, dan zullen de tegendrukken vanuit de wand op precies dezelfde wijze verlopen als in KW-0 is weergegeven in fig. [060-1c] voor een blok onder invloed van een koppel. Maar omdat de vervormingen in die 'lijmlaag' uiterst gering zullen zijn, zullen we toch spreken van een volledige inklemming. Het verloop van de tegendrukken is weergegeven in fig. 2b; en vergroot als verenmodel in fig. 2c.

Zoals in KW-0 [061] is afgeleid, hebben de bijbehorende trek- en drukkrachten een hefboomsarm van 2/3*h, zodat de horizontale krachten $3/2 \times zo$ groot moeten zijn als bij de rol en het scharnier van fig. 1a, waar de hefboomsarm gelijk is aan de hoogte *h* van de ligger, zie fig. 2d. Uit het beginsel *actie* = *reactie* volgt dat in doorsnede B-D van de balk waar het statisch moment $M_{\rm B} = -F_{\rm V} a$ werkt, even grote tegendrukken moeten optreden als in het aansluitingsvlak aan de wand, dus trek boven en druk onder. In de balk (ligger) spreken we echter niet meer van tegendrukken, maar van *spanningen*.

Spanningsverdeling in de ligger

We gaan er gemakshalve vanuit dat de ligger een houten balk is. Als we die die ergens in tweeën zagen en de delen weer aan elkaar lijmen, dan zal hier een overeenkomstige spanningsverdeling moeten optreden als bij de inklemming aan de wand, zij het met een kleiner statisch moment. Aangezien liggers zowel krachten als momenten kunnen overbrengen, kunnen we in feite elk deel van een ligger ingeklemd denken in het daaraan grenzende deel.

Neem er goede nota van dat een moment in een ligger altijd kan worden vervangen door twee krachten evenwijdig aan de liggeras op een afstand die kleiner is dan de hoogte van de ligger. Dit houdt in dat deze *inwendige krachten* over het algemeen *aanmerkelijk groter* zullen zijn dan de uitwendig aangrijpende krachten, zoals duidelijk is te zien in fig. 1a en 2d.

Fig. 2 Ingeklemde ligger

- a. Reactiekrachten bij een volledige inklemming
- b. Verloop van de tegendrukken bij een continue 'verende' inklemming die door de geringe dikte van de 'lijmlaag' in feite als een volledige inklemming kan worden beschouwd
- Aansluiting van de ligger aan de wand vergroot weergegeven met een verenmodel

d. Grootte van de *krachten* die behoren bij het verloop van de tegendruk in fig. 2b en 2c

c.

11.3.1 LIGGERS OVER MEER STEUNPUNTEN

Liggers over meer steunpunten kunnen weer statisch bepaald worden gemaakt door een aantal handig gekozen scharnieren aan te brengen. Elk scharnier levert immers een extra vergelijking, namelijk dat het moment van het linker of rechter aangrenzende deel om dat punt gelijk moet zijn aan nul. Dit is in fig. 1 voor elk scharnier symbolisch met -1 aangegeven, de graad van statisch onbepaaldheid wordt immers met 1 verminderd. In fig. 1 zijn de twee meest gebruikelijke vormen van dergelijke liggers weergegeven:

a. Om het andere veld twee scharnieren

b. Na het eerste veld in elk veld één scharnier Bij een andere (onhandige) plaats van de scharnieren kan echter instabiliteit optreden.

In fig. 1a hebben we te maken met twee liggers A-B en C-D met elk een overstek waarbij de derde ligger op deze overstekken rust. De oplegreacties van deze derde ligger vormen dan weer belastingen voor de liggers met overstek. Daarom kunnen we voor een snelle berekening het beste met de laatste ligger beginnen. In fig. 1b bezit de ligger A-B een overstek, de daarop volgende ligger rust op het overstek en de rol C, de derde ligger rust op het daaropvolgende overstek en de rol D. Deze liggers berekenen we achtereenvolgens van rechts naar links.

Fig. 1 Statisch bepaalde liggers over meer steunpunten

- a. Twee star ondersteunde liggers en één verend ondersteunde ligger
- b. Eén star ondersteunde ligger en twee liggers met één starre en één verende ondersteuning

11.3.2 LIGGERS ONDERSTEUND DOOR PENDELSTIJLEN

Liggers kunnen ook statisch bepaald worden ondersteund door middel van drie geschikt gekozen pendelstijlen. Aangezien elke pendelstijl alleen maar een reactiekracht in zijn eigen richting kan overbrengen, kunnen we de drie onbekende reactiekrachten analytisch of grafisch bepalen met behulp van de drie evenwichtsvergelijkingen uit KW-0 [034 - (3a,b,c) of (4a,b,c)].

In fig. 2 is een drietal vormen weergegeven van liggers met pendelstijlen.

Fig. 2 Liggers met pendelstijlen

Voor de berekening gaat men als volgt te werk. Allereerst wordt de resultante bepaald van alle uitwendige actiekrachten; zie ev. KW-0 [016] (grafisch) of [017] c.q. [020] (analytisch). Deze resultante moet dan evenwicht maken met de drie reactiekrachten R_1 , R_2 en R_3 . Dit houdt in dat de kracht die evenwicht maakt met de resultante, wordt ontbonden langs de werklijnen l_1 , l_2 en l_3 van de drie reactiekrachten. Deze procedures zijn uiteengezet in KW-0, [024] en [025]. In [212] zijn de oplegreacties bepaald voor de ligger van fig. 2a.

Bewandelt men de analytische weg dan kan op verschillende manieren te werk worden gegaan bij het opstellen van de evenwichtsvergelijkingen. Het vereist enige oefening om te zien op welke wijze men het snelste tot een oplossing kan komen.

Twee algemene wenken:

- Maak het statisch moment bij voorkeur op om een punt waar de werklijnen van twee reactiekrachten elkaar snijden.
- Indien er alleen verticale krachten op de ligger werken, kan in veel gevallen juist het controleren van het horizontale evenwicht (dus $\Sigma F_x = 0$), snel uitsluitsel geven over de krachten in bepaalde staven. Zo is bijv. de schuine pendelstijl in fig. 2b inactief onder alleen verticale belasting.

Onjuiste varianten

I Twee evenwijdige pendelstijlen (of kabels) Er is één reactiekracht te weinig; bij een horizontale belasting ontstaan twee mogelijkheden:

- a. Als de ondersteuningen op trek worden belast, zullen zodanig grote verplaatsingen optreden dat de pendelstijlen evenwijdig gaan staan aan de werklijn van de resultante, zoals is weergegeven fig. 3a.
- b. Als de ondersteuningen op druk worden belast, is de constructie instabiel en valt om, zie fig. 3b.
- c. Bij drie evenwijdige pendelstijlen zullen precies dezelfde verschijnselen optreden als bij twee. Enkel voor de krachten in de richting van de pendelstijlen is de constructie statisch onbepaald geworden.
- II De werklijnen van de drie pendelstijlen snijden elkaar in één punt, zie fig. 4.

Er is dan enkel maar evenwicht mogelijk als de werklijn van de resultante van alle actiekrachten ook door dit snijpunt gaat. Maken we namelijk het statisch moment op om dit snijpunt dan kunnen de reactiekrachten geen enkel moment leveren. Bij een willekeurige belasting zal de constructie dan zeer sterk verplaatsen, hij wordt dus instabiel.

- a. Grote verplaatsingen bij getrokken pendels
- b. Instabiliteit bij gedrukte pendels

Fig. 4 Drie pendelstijlen

a. b. De pendelstijlen gaan door één punt

c. De pendelstijlen gaan niet door één punt De ondersteuning van fig. 4a maakt op het eerste gezicht een zeer betrouwbare indruk, toch is hij instabiel, zoals blijkt uit fig. 4b. De vreemdsoortig aandoende ondersteuning van fig. 4c is echter wel degelijk stabiel

11.3.3 BEPALING OPLEGREACTIES

Ligger met scharnieren

Zoals reeds in 11.3.1 is besproken, kunnen doorgaande liggers statisch bepaald worden gemaakt door het aanbrengen van een voldoend aantal scharnieren. Elk scharnier vormt dan de begrenzing van een statisch bepaald liggerdeel. In fig. 1 is een eenvoudig voorbeeld verstrekt.

Voor de verticale belasting kunnen we het schema van fig. 1a zonder bezwaar iets anders tekenen, zie fig. 1b. Hieruit blijkt duidelijk dat we in feite te maken hebben met twee liggers die we achtereenvolgens kunnen berekenen:

- C-D: een vrij opgelegde ligger, links verend ondersteund en rechts star ondersteund.
- A-B-C: een vrij opgelegde ligger met overstek, waarop in punt C een nog onbekende kracht aangrijpt ten gevolge van de daarop rustende ligger C-D.

De vrij opgelegde ligger C-D heeft in C en D omhooggerichte oplegreacties van elk 1 kN. Uit het beginsel *actie* = *reactie* volgt dan dat in punt C van de ligger A-B-C een omlaaggerichte kracht van 1 kN moet werken. De oplegreacties in A en B zijn dan eenvoudig te bepalen [207].

Ligger met pendelstijlen

Bij een ligger op pendelstijlen is het bepalen van de oplegreacties wat bewerkelijker dan bij de in 11.2 behandelde hoofdvormen: de vrij opgelegde ligger en de volledig ingeklemde ligger. In fig. 2 zijn de oplegreacties bepaald voor de ligger uit fig. [210-2a]. Hiertoe kan de kracht Fworden ontbonden langs de drie werklijnen van de pendelstijlen; grafisch volgens KW-0 [024] en analytisch volgens [025].

Bij een analytische oplossing kunnen we de reactiekrachten R_1 , R_2 en R_3 in eerste instantie als drukkrachten aannemen, zie fig. 2a. Ter plaatse vam de ligger worden ze ontbonden in een verticale en een horizontale component. Als we dan het statisch moment opmaken om punt D, volgt R_3 rechtstreeks.

Let op; als we werken met R_{3V} en R_{3H} dan komen beide componenten voor in het momentenevenwicht, maar ze zijn (voor een hoek van 45°) wel even groot. Als we daarna het momentenevenwicht opmaken om punt B, dan volgt R_{1V} rechtstreeks en hieruit ook R_{1H} . Uit het verticale evenwicht volgt dan R_{2V} , dus ook R_{2H} .

In fig. 2b zijn alle actie- en reactiekrachten in grootte en richting weergegeven

Vooruitlopend op de behandeling van de snedekrachten in 12.1 en 12.2 zijn in fig. 2c de diagrammen weergegeven voor N, V en M, omdat alleen bij dit voorbeeld normaalkrachten optreden, zodat een normaalkrachtenlijn kan worden getekend.

- Fig. 1 Ligger over drie steunpunten met scharnier a. Gebruikelijk schema
- b. Herzien schema voor verticale belastingen
- c. Oplegreacties

11.3.4 BELASTINGAFDRACHT

Als een aantal elementen op elkaar wordt gestapeld is de beginner licht geneigd om bij elk onderdeel alleen te kijken hoe de totale verticale kracht van het ene element naar het andere successievelijk naar de ondergrond wordt afgedragen. Dit systeem is weergegeven in fig. 3a.

In de toegepaste mechanica worden één of meer onderdelen echter *vrijwel altijd* geïsoleerd van de rest beschouwd en worden reactiekrachten geïntroduceerd die *evenwicht* maken met de actiekrachten van elk onderdeel. Dit systeem is weergegeven in fig. 3b.

11.4.1 ACTIE- EN REACTIE-KRACHTEN

Bij alle analytische berekeningsmethoden van statisch bepaalde liggers moeten eerst de oplegreacties worden bepaald. Vanaf dat ogenblik hebben we te maken met een ligger die in evenwicht is onder invloed van een aantal krachten, zie fig. 1a2. Bij een inklemming kan ook een koppel werken, zie fig. 1b2.Voor de berekening doet het verder niet meer ter zake wat de 'actiekrachten' zijn en wat de 'reactiekrachten'. We zullen later zien dat we die dan ook klakkeloos kunnen verwisselen.

Al deze uitwendige krachten kunnen alleen maar evenwicht met elkaar maken omdat de ligger in staat is om krachten over te dragen en de afmetingen van de ligger moeten hierop worden aangepast om voortijdig bezwijken te voorkomen. Kennis van het verloop van deze krachten in een ligger is dus essentiëel voor het ontwerp.

11.4.2 SNEDE-METHODE

Bij de snede-methode brengt men een fictieve snede aan loodrecht op de liggeras, waardoor de ligger in twee stukken wordt verdeeld, zie fig. 2. Toepassing van de drie evenwichtsvoorwaarden levert dan de drie snedekrachten die in deze doorsnede moeten werken om het evenwicht van het 'afgesneden' deel te verzekeren.

Over het algemeen kan men volstaan met de berekening van enkele doorsneden om het verloop van de snedekrachten over de gehele lengte van de (horizontale) ligger te kunnen aangeven.

De drie snedekrachten worden aangegeven als: N normaalkracht (volgt uit $\sum F_x = 0$) V dwarskracht (volgt uit $\sum F_y = 0$) M buigend moment (volgt uit $\sum K_z = 0$) Bij liggers speelt de normaalkracht meestal een ondergeschikte rol; de meeste aandacht is gericht op de berekening van de momenten, waarbij de dwarskrachten soms als hulpmiddel worden gebruikt.

b. Eenzijdig ingeklemde ligger

Fig. 2 Aanbrengen van een fictieve snede bij de snedemethodea. Schema van de ligger met snede

b. Beschouwing rechter- en linker afgesneden deel

In hoofdstuk 12 is een methode ontwikkeld waarmee liggers, die zijn belast door puntlasten en/of gelijkmatig verdeelde belastigen, snel en overzichtelijk kunnen worden berekend.

Bij de snedemethode is er echter geen automatische controle op de juistheid van de uitkomsten, het is gewoon zaak om je niet te vergissen. Kennis van de krachtswerking in koorden zoals besproken in KW-1 is echter een uitstekend hulpmiddel om de vorm van de momentenlijn te controleren, zie 11.4.5 [215].

11.4.3 INTEGRATIE

Door gebruik te maken van enkele eenvoudige stellingen uit de differentiaal-en integraalrekening, kan de berekening op een meer systematische wijze worden uitgevoerd.

In principe kan de dwarskracht worden bepaald door integratie van de belasting en het buigend moment weer door integratie van de dwarskracht. Voor het oplossen van vraagstukken wordt deze integratie maar zelden langs analytische weg uitgevoerd, maar vrijwel altijd door het bepalen van oppervlakken.

Het is de meest universele methode voor het bepalen van momentenlijnen en de methode biedt ook nuttige controlemogelijkheden. De methode wordt besproken in hoofdstuk 13 [254-277].

11.4.4 SUPERPOSITIE

De meeste belastinggevallen kunnen worden gesplitst in twee (hooguit drie) veel eenvoudiger belastinggevallen, waarvan de momentenlijnen meer dan eens vrijwel uit het hoofd kunnen worden aangegeven. Door deze 'basisbelastinggevallen' op een bepaalde manier bij elkaar op te tellen – te *superponeren* – komt men snel tot overzichtelijke resultaten.

Het is in het algemeen een zeer verhelderende methode, die vooral bij de later te behandelen statisch onbepaalde liggers in KW-5 en KW-6, veel zal worden toegepast. De resultaten van de benodigde 'basisbelastinggevallen' kunnen zowel met de snedemethode zijn verkregen als door integratie.

De methode wordt besproken in hoofdstuk 13, [278-291].

11.4.5 GRAFISCHE METHODE

In KW-1 [123-125] is een tweezijdig bevestigd koord op overeenkomstige wijze belast als een ligger op twee steunpunten onder uitsluitend verticale belasting. Uit de evenwichtsbeschouwingen blijkt dat de vorm van het koord geheel overeenkomt met de vorm van de momentenlijn voor de ligger (berekening in hoofdstuk 12).

Het koord formeert als het ware zijn eigen momentenlijn door verticaal te verplaatsen.

Hiervan kan op twee manieren gebruik worden gemaakt:

- 1. Een ieder kan zich de vorm van zo'n koord gemakkelijk voorstellen of met behulp van een touwtje met enkele gewichtjes eraan ook zichtbaar maken. Dit geeft een uitstekende controle op de juiste vorm van momentenlijnen.Veel voorkomende fouten kunnen op deze wijze gemakkelijk worden vermeden.
- 2. Met behulp van poolfiguur en stangenveelhoek kan de momentenlijn ook gemakkelijk worden getekend op een willlekeurig te kiezen schaal.

Bij de grafische constructie van de momentenlijn behoeven de oplegreacties niet van te voren bekend te zijn. Bij dezelfde stangenveelhoek kunnen de opleggingen nog vrij worden gekozen waardoor de invloed van de ligging van de opleggingen op het momentenverloop zeer inzichtelijk wordt. De methode wordt besproken in hoofdstuk 14 [292-299].

Het is geen vereiste dat de student alle hiervoor genoemde berekeningsmethoden volledig beheerst; zonodig kan met de snede-methode worden volstaan. Een globaal inzicht in de overige methoden kan echter alleen maar van voordeel zijn. Het belangrijkste hierbij is de methode van superpositie [278] en het inzichtelijk-maken van het momentenverloop door de analogie met een overeenkomstige belast koord [297].

12 SNEDE-METHODE

Bepaling van de krachtswerking in liggers met behulp van de snede-methode

12.1 KRACHTSWERKING IN EEN NORMALE DOORSNEDE

12.1.1 ALGEMEEN

Een constructie of een onderdeel daarvan, kan alleen maar in evenwicht zijn onder invloed van de uitwendige krachten en de oplegreacties, omdat door de constructie krachten kunnen worden overgedragen. Deze inwendige krachten laten elk onderdeel vervormen. Indien deze krachten bepaalde grenswaarden overschrijden zullen ze uiteindelijk leiden tot het bezwijken van een of meer onderdelen. Een behoorlijke kennis van de grootte van de inwendige krachten is daarom van groot belang voor het dimensioneren, dat wil zeggen, het bepalen van de vereiste afmetingen van de constructie-onderdelen. Om de inwendige krachten bij een lineair constructie-onderdeel te bepalen brengt men een fictieve snede aan, loodrecht op de staaf- of liggeras. Vervolgens gaat men na welke 'snedekrachten' in deze doorsnede moeten werken om het evenwicht van het 'afgesneden' deel te verzekeren.

Om deze werkwijze met succes toe te kunnen passen is een aantal tekenafspraken nodig voor de belastingen, de reactiekrachten en de alsnog te definiëren snedekrachten.

12.1.2 TEKEN VAN DE REACTIEKRACHTEN

Elke kracht wordt als een positieve grootheid beschouwd als hij werkt in de richting waarin hij is getekend. Maar voor het opstellen van de evenwichtsvergelijkingen moeten we krachten kunnen optellen en aftrekken en hiervoor is het nodig om met een assenkruis te werken.

Bij alle liggerberekeningen in dit hoofdstuk wordt gebruik gemaakt van een (rechtsdraaiend) x-y-assenkruis, zie fig. 1. Hierbij worden krachten positief in rekening gebracht als ze werken in de richting van de positieve assen. Statische momenten worden positief gerekend bij een draaiing van de x-as naar de y-as.

Als dit beginsel strikt zou worden toegepast voor de oplegreacties, dan ontstaat het beeld dat is weergegeven in fig. 2a. Bij een verticaal omlaag gerichte belasting tussen de opleggingen volgt dan uit de evenwichtsvoorwaarden dat zowel $R_{\rm AV}$ als $R_{\rm BV}$ negatief zijn, zodat ze omhoog moeten werken. Ook de reactiekracht R_{AH} blijkt hier negatief te zijn. Het is daarom gebruikelijk om de oplegreacties te tekenen zoals men verwacht dat ze zullen werken, dit is dus meestal omhoog gericht, zoals in fig. 2b is weergegeven. Voor de oplegreacties vinden we dan positieve waarden, dat wil zeggen, ze werken inderdaad in de richting die we hebben getekend. Als ze daarentegen in tegengestelde richting moeten werken, blijkt dat uit het min-teken.

Aanbevolen werkwijze:

- Houdt voor het bepalen van het evenwicht consequent één en dezelfde regel aan om vergissingen te voorkomen.
- Oplegreacties worden getekend zoals dat:
 a. òf gebruikelijk is
 - b. òf de lezer het beste uitkomt.
- Verbindt aan het + of teken van een oplegreactie, zoals dat volgt uit de berekening, alleen de volgende betekenis: de reactie werkt in de aangenomen richting dan wel in de tegengestelde richting.
- Werk bij numerieke berekeningen nooit verder met negatieve waarden van de oplegreacties; geef ze in de tekening altijd in de juiste richting aan.

- Fig. 2 Richting van de oplegreacties
- a. Formele aanpak
- b. Praktische aanpak

Fig. 3 Gemetselde woning met houten vloeren

Een van de meest eenvoudige liggervormen treft men aan in de woningbouw: houten balken die rechtstreeks worden ondersteund door steensmuren, zodat de balken zich gedragen als liggers op twee steunpunten.

Ook hier doen we maar net alsof we met een rol en een scharnier te doen hebben, omdat de voornaamste functie van de opleggingen wordt vervuld: het afdragen van de verticale belasting.

De vloerplanken die op de balken worden gelegd, gedragen zich echter als doorgaande liggers over meer steunpunten, zie [291].

12.1.3 DEFINITIE SNEDEKRACHTEN N - V - M

Zoals reeds werd vermeld, wordt het evenwicht beschouwd van een deel van de ligger dat door een fictieve snede van het resterende liggerdeel is afgescheiden. Alle uitwendige krachten op dit afgesneden gedachte liggerdeel worden bekend verondersteld.

Voor de evenwichtsbeschouwing wordt weer gebruik gemaakt van de evenwichtsvoorwaarden, (zie KW-0, [034-(3)] en voor de definitie van K_z ; [035]):

$$\sum F_x = 0$$
$$\sum F_y = 0$$
$$\sum K_z = 0$$

Om het evenwicht te verzekeren zullen in de beschouwde doorsnede in principe dus de volgende grootheden moeten werken:

- een kracht in x-richting,
- een kracht in y-richting,
- een koppel met de draaiingsas in z-richting.

Voor deze inwendige krachten wordt een andere notatie gebruikt dan voor de uitwendige krachten en ze hebben ook een andere naam.

Ze worden achtereenvolgens aangeduid als:

- N = normaalkracht (kracht langs de staafas)
- V = dwarskracht (kracht loodrecht op de staafas)
- M = buigend moment (koppel met draaiingsas loodrecht op het vlak van tekening)

Indien de liggeras evenwijdig is met de x-as, komt de normaalkracht N dus overeen met $F_{\rm H}$ en de dwarskracht V met $F_{\rm V}$, zie fig. 1b. Als de ligger een willekeurige stand heeft ten opzichte van het x-y-assenkruis, zal de evenwichtmakende kracht in de beschouwde snede altijd worden ontbonden in een kracht N langs de liggeras en een kracht V loodrecht op de liggeras, zie fig. 2b. De grootheden N en V komen dan niet langer overeen met resp. $F_{\rm H}$ en $F_{\rm V}$. De kracht F in fig. 1a en 2a kan als een enkele puntlast worden beschouwd, maar even goed als de resultante van alle krachten die op het afgesneden deel werken.

Fig. 1 Snedekrachten bij een horizontale eenzijdig ingeklemde ligger

a. Schema van de ligger met snede

b. Afgesneden deel met de evenwicht makende snedekrachten N en V, resp. in de x- en y-richting, en het buigend moment M

- Fig. 2 Snedekrachten bij een eenzijdig ingeklemde ligger onder een helling
- a. Schema van de ligger met snede
- b. Afgesneden deel met evenwicht makende snedekrachten N en V, resp. in de *n*- en *t*-richting, plus het buigend moment M

12.1.4 OPLEGREACTIES BIJ EEN VRIJ OPGELEGDE LIGGER

Bij de eenzijdig ingeklemde liggers van fig. 1 en 2 kunnen we rechtstreeks een snede aanbrengen en houden dan een liggerdeel over waarop een *bekende* kracht *F* werkt.

Maar als we bij een vrij opgelegde ligger een dergelijke snede aanbrengen, houden we een liggerdeel over waarop een nog *onbekende* oplegreactie werkt. Die kracht zullen we dus eerst moeten bepalen.

In het voorbeeld van fig. 3 is een ligger beschouwd die is ondersteund door een scharnier en een rol en is belast door één puntlast F, die een hoek α maakt met de verticaal. Het aangrijpingspunt B van de kracht ligt op een afstand avanaf de linker oplegging. Alle horizontale maten zijn gemeten langs de hartlijn van de ligger. Bij het opmaken van het momenten-evenwicht is de dikte van de ligger verwaarloosd, zodat $F_{\rm H}$ en $R_{\rm AH}$ in elkaars verlengde komen te liggen.

Bepaling van de reacties in A, zie fig. 3a, b:

 $\sum K_{\rm C} = 0: + R_{\rm AV} l - F_{\rm V} b = 0$ $R_{\rm AV} = \frac{b}{l} F_{\rm V}$

 $\sum F_x = 0: \qquad -R_{\rm AH} + F_{\rm H} = 0$

 $R_{\rm AH} = F_{\rm H}$

Bepaling van de reactie in C:

$$\sum K_{\rm A} = 0: + F_{\rm V} a - R_{\rm CV} l = 0$$

$$R_{\rm CV} = \frac{a}{l} F_{\rm V}$$

Controle:

$$-R_{\rm AV} + F_{\rm V} - R_{\rm CV} = 0$$

Het aanbrengen van een 'snede' in deze ligger en het bepalen van de snedekrachten wordt uitvoerig behandeld in [222-223], ook numeriek.

Fig. 3 Vrij opgelegde ligger belast door een puntlast a. Schema

b. Afmetingen en reactiekrachten

12.1.5 PRINCIPE SNEDEMETHODE

Op een afstand x vanaf A brengen we in punt S een snede aan en we onderzoeken wat in deze snede moet werken, om aan het evenwicht te voldoen, zie fig. 1b (zie ook fig. [218-1]).

Professor Vreedenburgh – legendarisch hoogleraar Toegepaste Mechanica bij de Faculteit der Civiele Techniek – placht te zeggen:

'Breng daar waar je wat wilt weten een snede aan, neem het afgesneden stuk in de hand en ga na wat die hand dan voelt'

Tracht dit gedachten-experiment zo letterlijk mogelijk te nemen. Kijk alleen naar het afgesneden stuk met alle krachten die daarop werken en 'vergeet' het resterende stuk van de constructie. In het afgesneden stuk zorgt de constructie er zelf wel voor dat de krachten worden overgedragen. Enkel ter plaatse van de snede dient de rekenaar de taak van de constructie even over ter nemen.

In fig. 1c is het afgesneden stuk letterlijk – eigenlijk 'figuurlijk' – in de hand genomen. Om te weten wat de hand ondergaat, verplaatsen we de twee krachten die op het uiteinde van de ligger werken naar die hand, dus naar punt S.

Hiervoor kunnen we gebruik maken van de regels voor het verplaatsen van krachten volgens KW-0 [014]. Als we dit doen blijft het *effect* van de oorspronkelijke krachten dus onveranderd.

In fig. 1d is het resultaat weergegeven.

De kracht R_{AH} mag langs zijn werklijn naar rechts worden verschoven.

De kracht R_{AV} mag naar punt S worden verplaatst door het invoeren van een koppel: $K = + R_{AV} * x$

Fig. 1 Snede-methode

a. Schema van de liggerb. Actie- en reactiekrachten werk

- Actie- en reactiekrachten werkend op de ligger
- c. Beschouwing van het 'afgesneden' deeld. Verplaatsing van alle krachten op het
 - afgesneden deel naar het punt S

Actie = Reactie

Als de hand die twee krachten en het koppel in evenwicht moet houden, zal de hand gelijke en tegengesteld gerichte krachten en een gelijk en tegengesteld gericht koppel moeten leveren, alles weer volgens het principe *actie = reactie*. Een en ander is weergegeven in fig. 2a. De verplaatste 'uitwendige krachten' (waarbij dus ook het koppel met het begrip 'kracht' wordt omschreven) zijn weergegeven in zwart. De hierdoor veroorzaakte 'inwendige krachten' zijn weergegeven in wit.

Uit de drie evenwichtsvoorwaarden volgt dan voor punt S:

$$R_{AH} = N$$
$$R_{AV} = V$$
$$K = M$$

Het buigende moment in de ligger is dus gelijk aan $M_x = R_{AV} * x$, zodat geldt, zie [219]:

$$M_x = \frac{b x}{l} F_{\rm V}$$

Fig. 2a wekt de indruk dat er niets op punt S werkt omdat alle krachten elkaar opheffen. Daarom zijn de uitwendige krachten (zwart) en de inwendige krachten (wit) in fig. 2b nogmaals getekend, maar nu ter weerszijden werkend op een smal mootje van de ligger.

Let wel, het is steeds het *samenstel* van twee overeenkomstige krachten (zwart en wit) die een normaalkracht, een dwarskracht en een buigend moment in het liggerdeeltje veroorzaken, dus ook in de twee begrenzenzingsvlakken.

In fig. 2b werken de verticale krachten niet langer in elkaars verlengde en leveren dus eigenlijk een extra koppeltje. Maar daar kijken we pas naar in [262].

Fig. 2 Krachten-evenwicht ter plaatse van de snede S a. Verplaatste actiekrachten (zwart) met de daardoor veroorzaakte reactiekrachten (wit)

 Dezelfde krachten als onder a., maar nu aangrijpend op een elementair mootje van de ligger

Fig. 3 Cartoon uit 'Naked Eye' van Sam Cobean. Hierin worden een aantal zaken duidelijk aan de orde gesteld:

- alle constructies zijn driedimensionaal, dit geldt ook voor liggers en portalen
- het aanbrengen van een snede dient men zich zo letterlijk mogelijk voor te stellen
- bezint eer ge begint

222

12.1.6 SNEDEMETHODE FORMELE AANPAK

De gang van zaken in [220-221] is voornamelijk ter wille van het inzicht gegeven. Toch zal later blijken [228] dat we na enige oefening praktisch hetzelfde doen als is beschreven op de twee voorgaande pagina's.

Voorlopig kiezen we echter een meer formele aanpak, die overeenkomt met de manier waarop we ook de oplegreacties bepalen.

We tekenen het liggerschema (fig. 1a), ontbinden de uitwendige kracht in een verticale en een horizontale component en berekenen de oplegreacties, zie fig. 1b. Vervolgens tekenen we het 'afgesneden' liggerdeel met de daarop werkende krachten en brengen in de gekozen snede rechtstreeks de vooralsnog onbekende inwendige krachten N, V en M aan, zie fig. 1c.

In deze snede (punt S) maken we dan achtereenvolgens eerst het verticale evenwicht op, dan het horizontale evenwicht en ten slotte het momenten-evenwicht. Dit levert precies dezelfde uitkomsten op als in [221].

We hadden natuurlijk ook het rechterdeel van de ligger als het afgesneden deel kunnen beschouwen. Uit het beginsel *actie* = *reactie* mogen we concluderen dat de inwendige krachten op dat deel even groot zullen zijn, maar tegengesteld gericht, zie fig. 1d. We zullen deze richting vast intekenen maar toch achteraf controleren of er inderdaad hetzelfde uitkomt.

- Fig. 1 Bepaling van de snedekrachten in punt S van een vrij opgelegde ligger
- a. Schema
- b. Ligger met kracht en oplegreacties als bekenden
- c. Beschouwing van het linker deel van de ligger
- d. Beschouwing van het rechterdeel van de ligger

Numerieke uitwerking

Ter wille van de overzichtelijkheid is het voorbeeld van [219] verder numeriek uitgewerkt, zie fig. 1b.

De gegevens luiden: a = 4 m, b = 2 m, l = 6 m. $F_V = 12 \text{ kN}, R_{AV} = 4 \text{ kN}, R_{CV} = 8 \text{ kN}.$ $F_H = 6 \text{ kN}, R_{AH} = 6 \text{ kN}.$ We zullen achtereenvolgens bepalen: de normaalkracht N, de dwarskracht V en het buigend moment M, en wel: in een punt S op 2,5 m afstand rechts van A. Het moment $\Sigma K_z = 0$ wordt hierbij in beide gevallen opgemaakt om punt S.

Beschouwing linkerdeel:

$\Sigma F_x = 0$:		
-6 + N = 0	N = 6	kN
$\Sigma F_y = 0$:		
-4 + V = 0	V = 4	kN
$\Sigma K_z = 0$:		
+4 * 2,5 - M = 0	M = 10	kNm

Beschouwing rechterdeel:

$$\Sigma F_x = 0:$$

$$-6 + N = 0$$

$$\Sigma F_y = 0:$$

$$-V + 12 - 8 = 0$$

$$V = 4 \text{ kN}$$

$$\Sigma K_7 = 0$$

+M + 12 * 1,5 - 8 * 3,5 = 0 M = 10 kNm

We vinden inderdaad precies dezelfde uitkomsten bij beschouwing van het linkerdeel en het rechterdeel van de ligger.

De uitwerking voor het rechterdeel is echter wat bewerkelijker. We zullen daarom voor evenwichtsbeschouwingen bij voorkeur het liggerdeel kiezen waarop zo min mogelijk krachten werken. We hadden ons de rekenpartij voor het rechterdeel natuurlijk kunnen besparen. Als de ligger in evenwicht is dan moet het statisch moment – om elk willekeurig gekozen punt – van alle uitwendige krachten die op de ligger werken, gelijk zijn aan nul. Als we dan beginnen met het statisch moment op te maken van alle krachten die links van punt S liggen, dan komt daar een bepaalde waarde M_S uit. De resterende krachten rechts van punt S zullen er dan voor moeten zorgen dat daar een even grote tegengestelde waarde $-M_S$ optreedt, om het statische moment in zijn totaliteit weer gelijk aan nul te maken.

Fig. 2 Hal van geprefabriceerd beton

Eén verdiepinghoge stapelbouw, waarbij de hoofdliggers rechtstreeks dragen op de bovenkant van de kolommen en de dwarsdragers weer rusten op de bovenzijde van de hoofdliggers.

Fig. 3 Stapelbouw van meerdere verdiepingen De hoofdliggers rusten via kransconsoles op de kolommen. Tussen de hoofdliggers worden dubbel-T-platen aangebracht die werken als brede vrij opgelegde liggers.

12.1.7 TEKEN VAN DE SNEDEKRACHTEN

De voorbeelden tot dusver zijn zodanig gekozen dat de waarden van N, V en M alle drie positief zijn. We zullen nu aangeven op welke wijze de vervormingen van de ligger het teken van deze grootheden bepalen.

Deze tekenafspraken voor de snedekrachten zijn bindend en dienen strikt te worden aangehouden. Ze zijn volkomen onafhankelijk van de tekenafspraken voor het bepalen van het uitwendig evenwicht volgens [216], die alleen gemakshalve worden gehanteerd.

Snijdt men een elementje uit de ligger dan werken de positieve normaalkrachten N, dwarskrachten V en buigende momenten M van buiten uit op de materie zoals is aangegeven in de onderstaande figuur 1a.

Fig. 1 Teken van de snedekrachten

- a. Positieve richtingen van N, V en M
- b. Afschuifteken (met fictieve verplaatsing van twee liggermoten)
- c. Buigteken (met werkelijke maar sterk overdreven – vervorming van een liggermootje)

Normaalkracht

De normaalkracht is positief als de krachten op het elementje beide naar buiten werken, zodat het elementje wordt uitgerekt, zie fig. 1a. Let op, de linker kracht werkt weliswaar in de negatieve richting volgens [216] en de rechter kracht in de positieve richting, maar beide krachten *samen* veroorzaken een positieve normaalkracht (= trek) in het getekende elementje. Desgewenst kunnen trek en druk ook in de vorm van tekentjes worden aangegeven:

Trek	+	=	\leftarrow	\rightarrow	
Druk	_	=	\rightarrow	\leftarrow	

Dwarskracht

De dwarskracht is positief als de kracht die op het linker zijvlakje van het elementje werkt, van de beschouwer àf is gericht en de kracht die op het rechter zijvlakje werkt, naar de beschouwer toe is gericht, zie fig. 1a, b.

Voor een horizontale ligger die in een verticaal plat vlak ligt betekent dit: links omhoog gericht en rechts omlaag gericht.

Het is aan te bevelen om afschuiving met de zgn. afschuiftekens aan te geven, zie fig. 1b. Men kan hierbij denken aan de verplaatsing van twee opeenvolgende ligger-elementjes ten opzichte van elkaar, onder invloed van de dwarskracht alléén, als er tussen deze elementjes een smeermiddel zou zijn aangebracht.

Buigend moment

Het buigend moment wordt bij horizontale liggers positief gerekend als de bolle kant van de ligger aan de onderzijde ligt en de holle kant aan de bovenzijde, zie fig. 1c.

Als ezelsbruggetje voor positief en negatief kunnen de getekende gezichtjes worden gebruikt. Een plank over een sloot onder de invloed van een zwaartekrachtsbelasting vertoont dus een positief buigend moment. De buigtekens spreken voor zichzelf.

Bij normaalkrachten en dwarskrachten is de tekenafspraak onafhankelijk van de situering van de ligger, zoals men gemakkelijk ziet door een elementje van de ligger een halve slag in het platte vlak te draaien.

Bij het buigend moment is dit niet zo. Bij verticale of schuin staande liggers kan men eigenlijk vrij kiezen wat men positief of negatief noemt. Maar bij portalen is hiervoor toch wel een bepaald gebruik ingeburgerd, zie KW-3 en KW-6. Bij het rekenen zal men steeds gebruik maken van + en - tekens. Als men de afspraken van [226] aanhoudt, hebben de doorsnede-grootheden automatisch het juiste teken.

Bij onzekerheid over het teken kan men de symbolotjes voor de vervormingen gebruiken. Pas de symbolen voor V en M in ieder geval toe bij verticale en schuin staande liggers.

12.1.8 EENZIJDIG INGEKLEMDE LIGGER

Als de inklemming zich aan de rechterzijde bevindt – zoals in fig. 2a is weergegeven, kan het buigend moment in de punten A, B, C, D gemakkelijk worden bepaald.

In fig. 2b zijn achtereenvolgens sneden aangebracht ter plaatse van de punten B, C en D en is het momenten-evenwicht van de afgesneden delen beschouwd, waarbij V en M als positieve grootheden in de sneden zijn aangebracht, volgens de tekenafspraken van fig. 1a.

Beschouwing linkerdeel:

punten A en B $M_{A} = M_{B} = 0$ punt C: $-F*a - 2F*0 - M_{C} = 0$ ofwel: $M_{C} = -Fa$ punt D: $-F*2a - 2F*a - M_{D} = 0$ ofwel: $M_{D} = -4Fa$

Als de inklemming zich aan de linkerzijde bevindt en we willen toch van links naar rechts werken, dan moeten eerst de oplegreacties bij de inklemming worden berekend. Deze volgen mede uit fig. 2b en zijn weergegeven in fig. 2c. In fig. 2d zijn weer sneden aangebracht ter plaatse van de overeenkomstige punten D', C', B' en is het momenten-evenwicht van de afgesneden linkerdelen beschouwd. Hierbij zijn V en M weer als positieve grootheden in de sneden aangebracht, volgens de tekenafspraken van fig. 1a. *Beschouwing linkerdeel:*

punt D': $-4Fa - M_{D'} = 0$ ofwel $M_{D'} = -4Fa$ punt C': $-4Fa + 3F*a - 2F*0 - M_{C'} = 0$ ofwel $M_{C'} = -Fa$ punt B': $-4Fa + 3F*2a - 2F*a - F*0 - M_{B'} = 0$ ofwel: $M_{B'} = 0$ De uitkomsten zijn uiteraard gelijk aan die van

fig. 2b, maar we zullen veel meer op ons qui-vive moeten zijn om geen fouten te maken.

Fig. 2 Ingeklemde ligger; moment in enkele sneden

- a. Schema bij een inklemming rechts
- b. Krachten op de afgesneden delen
- c. Schema bij een inklemming links
- d. Krachten op de afgesneden delen

12.2.1 ALGEMEEN

In 12.2.2 wordt een recapitulatie gegeven van de stappen die men moet uitvoeren om in een snede van een ligger de grootte van de snedekrachten te bepalen: de normaalkracht N, de dwarskracht V het buigend moment M.

Als men van te voren kan overzien in welke doorsneden de grootste snedekrachten optreden dan kan men volstaan met het bepalen van de snedekrachten in deze doorsneden.

Voor een goed inzicht in de krachtswerking is het echter aan te bevelen om het verloop van deze snedekrachten langs de gehele ligger uit te zetten. In sommige gevallen kan het verloop van de normaalkracht belangrijk zijn, bijv. bij kolommen. Zo'n diagram voor de normaalkracht noemt men dan een *normaalkrachtenlijn*.

Verreweg het belangrijkste is echter het verloop van het buigende moment, omdat hierdoor de grootste vervormingen ontstaan en bezwijken van een ligger veelal door buiging wordt ingeleid. Het dwarskrachtenverloop wordt bij sommige rekenmethoden dan voornamelijk gebruikt als hulpmiddel om het momentenverloop te kunnen bepalen [265].

De diagrammen worden respectievelijk aangeduid als *momentenlijn* en *dwarskrachtenlijn*.

De belasting op een ligger veroorzaakt in principe een gelijktijdig optreden van de drie snedekrachten. In de diagrammen worden ze echter altijd strikt gescheiden van elkaar behandeld.

In [226-237] wordt de snedemethode numeriek uitgewerkt voor puntlasten. In [238-241] wordt een analytische uitwerking gegeven voor gelijkmatig verdeelde belastingen.

Om snel en efficient momentenlijnen te kunnen tekenen voor combinaties van puntlasten en gelijkmatig verdeelde belastingen is in [242-250] een nieuwe berekeningsvariant geïntroduceerd, waarbij de gelijkmatig verdeelde belasting in eerste instantie wordt vervangen door één of meer puntlasten.

12.2.2 REKENPROCEDURE

De algemene gang van zaken voor de berekening van een of meer snedekrachten in een doorsnede van een ligger is als volgt:

- a. Teken het schema van de constructie met de daarop werkende krachten, zie fig. 1a
- b. Bereken de oplegreacties en teken ze in de figuur in de richting zoals ze op de ligger aangrijpen, zie fig. 1b.
- c. Breng op de gewenste plaats een snede aan en beschouw één van beide 'afgesneden' delen met alle uitwendige krachten en oplegreacties die op dit deel werken.
- d. Teken de snedekrachten N, V en M zoals ze in positieve richting op het beschouwde deel werken, zie fig. 1c of 1d.
- e. Bepaal de waarden van N, V en M met behulp van de drie evenwichtsvergelijkingen: $\Sigma F_x = 0; \Sigma F_y = 0; \Sigma K_z = 0.$
- f. Ga na of het teken van de snedekrachten klopt met de te verwachten vervormingen.

In fig. 1 zijn de opeenvolgende stappen schetsmatig weergegeven zonder nadere uitwerking. Omdat het alleen om het principe gaat is een wat ongebruikelijke liggervorm gekozen.

In elk figuurtje zijn de bekende krachten met zwarte pijlen aangegeven en de daar nog onbekende krachten met witte pijlen.

In [228] wordt begonnen met een aantal eenvoudige rekenvoorbeelden waarbij alleen verticale puntlasten op een horizontale ligger aangrijpen, zodat geen normaalkrachten zullen optreden. Het zal blijken dat men veelal het moment en de dwarskracht slechts in enkele punten behoeft te bepalen om het gehele diagram te kunnen tekenen.

Voor de beginner is het aan te raden om een aantal gevallen door te rekenen op de hierboven beschreven wijze.

- Fig. 1 Opvolgende stappen in de snedemethode
- a. Schema van de belaste ligger
- b. Berekening van de (nog onbekende) oplegreacties
- c. Beschouwing van het linker afgesneden deel van de ligger met oplegreacties als bekenden en de snedekrachten als onbekenden
- d. Idem voor het rechterdeel

Fig. 2 Beschouwing van de buigvervormingen

- a. Omhoog gerichte oplegreacties (c.q. actiekrachten) op een ligger-uiteinde veroorzaken positieve momenten.
- b. Grijpen ook uitwendige momenten aan (zoals bij een inklemming) dan zal de invloed van het moment in de directe omgeving overheersen.

12.2.3 SNEDEMETHODE PRACTISCHE AANPAK

Zodra men enige routine heeft verkregen kan men echter wat sneller te werk gaan. Hierbij werkt men het gemakkelijkst als het linker afgesneden deel van de ligger wordt beschouwd. De dwarskracht en het moment kunnen dan direct worden opgeschreven in de beschouwde snede (punt S). Hierbij werkt men als volgt, vergelijk fig. [220-1c] met fig. [222-1c]:

De dwarskracht V is gelijk aan de som van alle uitwendige verticale krachten op het beschouwde linker deel van de ligger, waarbij omhoog gerichte krachten positief worden aangenomen. Het buigend moment M is gelijk aan het statisch moment van van alle uitwendige krachten om punt S waarbij omhoog gerichte krachten weer positief worden aangenomen.

Als het rechter afgesneden deel van de ligger moet worden beschouwd dan moeten voor de dwarskracht *omlaag* gerichte krachten als positief worden aangenomen maar voor het buigend moment weer de *omhoog* gerichte krachten. De essentie ligt hierin dat men gewoon kijkt welke buigvervorming door een kracht wordt veroorzaakt en aan die vervorming een teken toekent, zie fig. 2

In de hierna volgende berekeningen zal veelal de hierboven besproken werkwijze worden toegepast waarbij V en M dus rechtstreeks worden opgeschreven. Uiteraard vindt men dezelfde resultaten als voorheen.

12.2.4 LIGGER BELAST DOOR EEN PUNTLAST

De ligger is in de punten A en C opgelegd en de puntlast F bevindt zich op een afstand a vanaf de linker oplegging, zie fig. 1a,b.

Bepaling van de oplegreacties Aanbevolen werkwijze:

Om de oplegreacties te berekenen wordt het statisch moment achtereenvolgens opgemaakt om beide oplegpunten. De voorwaarde voor het verticale evenwicht wordt dan alleen als controlemiddel gebruikt.

$$\Sigma K_{\rm C} = 0: + R_{\rm A} * l - F * b = 0$$
$$R_{\rm A} = \frac{b}{l} F \qquad (1)$$

$$\Sigma K_{A} = 0: +F*a - R_{C}*l = 0$$

$$R_{C} = \frac{a}{l} F \qquad (2)$$

Controle:

$$R_{\rm A} + R_{\rm C} = \frac{a+b}{l} F = F$$

Bepaling van het moment:

Het buigend moment onder de puntlast blijkt maximaal te zijn. De grootte bedraagt:

$$M_{\rm B} = R_{\rm A}a = \frac{b}{l}F \ a = \frac{ab}{l}F \tag{3}$$

De oplegreacties zijn omgekeerd evenredig met de afstand van de oplegging tot de puntlast. De uitdrukking voor het maximale moment kan eveneens gemakkelijk worden onthouden.

Bij de bepaling van de diagrammen voor de dwarskracht en het buigend moment is ter wille van de eenvoud en de overzichtelijkheid verder numeriek te werk gegaan, zie fig. 1c.

Fig. 1 Ligger belast door één verticale puntlast

- a. Schema van de ligger
- b. Afmetingen; actie- en reactiekrachten
- c. Numerieke gegevens
- d. Dwarskrachtenlijn e. Momentenlijn

Numerieke uitwerking

Voor afmetingen en krachten, zie fig. 1c. a = 4 m; b = 2 m; l = 6 m; F = 9 kN. De oplegreacties bedragen volgens (1) en (2): $R_A = 2/6 * 9 = 3$ kN

 $R_{\rm C} = 4/6 * 9 = 6 \text{ kN}$

Het moment onder de puntlast bedraagt volgens formule (3):

$$M_{\rm B} = \frac{4*2}{6} \ 9 = 12 \ \rm kNm$$

To epassing van formule (3) is alleen maar zinvol als de oplegreacties nog niet zijn berekend. Is dit wel het geval dan vindt men rechtstreeks $M_{\rm B} = R_{\rm A} * a = 3 * 4 = 12$ kNm

Om de dwarskrachtenlijn te tekenen, brengen we een snede aan op een afstand x vanaf de linker oplegging en bepalen daar de dwarskracht, zie fig. 1b, c, d.

Voor 0 < x < a geldt: $V_x = +3$ kN Voor a < x < l geldt: $V_x = +3 - 9 = -6$ kN

De dwarskrachtenlijn is dus een blokvormige figuur die ter plaatse van een puntlast of een oplegreactie sprongsgewijs varieert, zie fig. 1d. In de diagrammen zullen positieve dwarskrachten altijd naar boven worden uitgezet.

Om de momentenlijn te kunnen tekenen wordt eveneens van een snede op een afstand x van de linker oplegging uitgegaan.

Het buigend moment wordt bepaald volgens de snedemethode, beschreven in [227].

Voor 0 < x < a geldt: $M_x = +3 * x = 3x$ kNm Voor a < x < l geldt: $M_x = +3 * x - 9 * (x - 4) = (36 - 6x)$ kNm

Dit zijn de vergelijkingen van twee rechte lijnen waarvan de eerste de horizontale as snijdt ter plaatse van punt A en de tweede ter plaatse van punt C. Van elke lijn is slechts een gedeelte geldig; ter plaatse van het snijpunt van beide lijnen gaat men van de eerste tak over op de tweede. Het snijpunt van beide lijnen geeft het buigend moment aan in punt B ter grootte $M_B = +12$ kNm In de diagrammen zullen positieve buigende momenten altijd omlaag worden uitgezet.

Bij het tekenen van de momentenlijnen dient men bij voorkeur de volgende regels in acht te nemen:

- zet het buigteken in het betreffende deel van het momentenvlak,
- zet de momenten zodanig uit ten opzichte van de nullijn, dat de holle zijde van het buigteken aan de zijde van de liggeras ligt, zie fig. 2b.

Ter wille van de duidelijkheid zijn de normaalkrachten-, dwarskrachten- en momentenlijnen in een aantal figuren met een raster aangegeven, zoals in fig. 1; ôf met een arcering zoals in fig. 2. Positieve waarden krijgen een arcering loodrecht op de liggeras, negatieve waarden een arcering evenwijdig aan de liggeras. Deze regel geldt ook voor verticaal staande liggerdelen (stijlen). Geef de tekens voor de snedekrachten (afschuifteken en buigteken) in ieder geval aan!

Fig. 2 Aanduiding van positieve en negatieve waarden voor de snedekrachten

- a Dwarskrachten
- b. Buigende momenten

12.2.5 LIGGER BELAST DOOR EEN AANTAL PUNTLASTEN

Als een ligger door meer dan één puntlast wordt belast, dan staan er geen kant en klare formules ter beschikking om de oplegreacties rechtstreeks te bepalen. Ook de vorm van de momentenlijn is niet zonder meer aan te geven.

In fig. 1 is een vrij opgelegde ligger weergegeven die is belast door drie puntlasten op regelmatige afstanden. Voor de berekening van een dergelijke ligger bestaan verschillende mogelijkheden.

Superpositie

Men zou het maximale moment voor elke puntlast afzonderlijk met formule [228 - (3)] kunnen berekenen en vervolgens de drie bijbehorende momentenlijnen tekenen, zoals is weergegeven in de figuren 1b-c-d.

Vervolgens zou men de momentenlijnen voor deze belastinggevallen als het ware over elkaar heen kunnen draperen, zoals is weergegeven in fig. 1e. In feite zijn dan alle moment-ordinaten ter plaatse van de werklijnen van de drie krachten gewoon bij elkaar opgeteld, vergelijk de figuren 1b t/m 1e.

In mechanica-termen heet dit *superponeren*. Uit deze aanpak blijkt het volgende; een ligger die uitsluitend is belast door puntlasten, bezit een momentenlijn die is opgebouwd uit rechte lijnstukken, waarbij alleen ter plaatse van de puntlasten knikken kunnen optreden.

Bij het superponeren in hoofdstuk 13 zullen we zien dat een overeenkomstige – maar wat slimmere – aanpak voor *twee* belastinggevallen zeer effectief kan zijn [279-281]. In feite zullen we nooit te werk gaan zoals is aangegeven in fig. 1e. Maar uit de figuur blijkt duidelijk dat we alleen de momenten ter plaatse van de puntlasten behoeven te berekenen om de gehele momentenlijn te kunnen tekenen, zoals numeriek is uitgewerkt in [231].

Maar als we met teken-nauwkeurigheid kunnen volstaan dan is zelfs dat niet nodig. We kunnen we dan al na het berekenen van één oplegreactie de gehele momentenlijn construeren. Vooruitlopend op de behandeling in [231] is in fig. 1f het resultaat weergegeven.

GEBRUIKELIJKE REKENPROCEDURE

In fig. 2a is de vrij opgelegde ligger uit fig. 1a nogmaals weergegeven. De uitwerking hiervan zal geheel numeriek geschieden.

Bepaling oplegreacties; zie fig. 1a.

```
\Sigma K_{A} = 0:
+8*3+4*6+12*9-R<sub>E</sub>*12 = 0

R<sub>E</sub> = (+24+24+108)/12 = 156/12 = 13 kN

\Sigma K_{E} = 0:
+R<sub>A</sub>*12-8*9-4*6-12*3 = 0

R<sub>A</sub> = (+72+24+36)/12 = 132/12 = 11 kN

Controle: \Sigma F_{y} = 0:

-11+8+4+12-13 = +24-24 = 0
```

Zodra de oplegreacties bekend zijn worden deze in de figuur in grootte en richting aangegeven, zie fig. 2a. We hebben dan een ligger die in evenwicht is onder de invloed van 5 puntlasten.

- a. Actie- en reactiekrachten op de ligger
- b. Dwarskrachtenlijn
- c. Momentenlijn

Voor een uitvoeriger uitleg van deze grafische aanpak wordt verwezen naar [293] waar op overeenkomstige wijze een eenzijdig ingeklemde ligger is behandeld.

Dwarskracht

Voor de dwarskrachtenlijn wordt de ligger tussen de punten A en E in vier zones verdeeld. In elke zone is de dwarskracht constant.

Berekening van de dwarskracht in kN.

A-B:	V = +11	=	+ 11
B-C:	V = +11 - 8	=	+ 3
C-D:	V = +11 - 8 - 4	=	- 1
D-E:	V = +11 - 8 - 4 - 12	=	- 13
De dwarskrachtenlijn is getekend in fig. 2b.			

Momenten

Voor het tekenen van de momentenlijn berekenen we de momenten in alle punten waar puntlasten aangrijpen. De rechte verbindingslijnen van deze punten vormen dan de momentenlijn. Ten overvloede zijn ook de puntlasten in de berekening opgenomen waarvan de arm gelijk is aan nul, zodat het moment eveneens gelijk is aan nul.

Berekening van het buigend moment in kNm.

$M_{\rm A}$	= +11 * 0	=	0
$M_{\rm B}$	= +11 * 3 - 8 * 0	=	+ 33
$M_{\rm C}$	= +11 * 6 - 8 * 3 - 4 * 0	=	+ 42
$M_{\rm D}$	= +11 * 9 - 8 * 6 - 4 * 3 - 12 * 0	=	+ 39
$M_{\rm E}$	= +11 * 12 - 8 * 9 - 4 * 6 +		
	-12 * 3 + 13 * 0	=	0

Er is consequent van links naar rechts gewerkt om de regelmaat te tonen in de opbouw van het moment. De momentenlijn van fig. 2c komt uiteraard geheel overeen met die van fig. 1e.

GRAFISCHE AANPAK

Voor het tekenen van de momentenlijn hebben we genoeg aan de berekening van de oplegreactie R_A die we vonden door het momenten-evenwicht om punt E op te maken.

(zie $\Sigma K_{\rm E} = 0$ in het gestippelde kader boven fig. 2). Maar als we van elke afzonderlijke puntlast het moment om punt E weten, dan weten we ook dat al deze momenten lineair moeten verlopen tussen de betreffende puntlast en punt E. In de moment-notatie wordt het moment in E ten gevolge van een puntlast in A (bij wijze van uitzondering) aangegeven als $M_{\rm E}^{\rm A}$ = + 132. Het verloop van dit positieve moment kunnen we dus direct tekenen, zie fig. 1f. Vanaf punt B komt er een lineair verlopend buigend moment bij, met als waarde in E: $M_E^B = -72$. Hierdoor wordt het positieve momentenvlak ten gevolge van R_A dus verminderd met het licht gerasterde momentenvlak. Evenzo gaat er vanaf punt C het iets donkerder momentenvlak af met als maximum $M_{\rm E}^{\rm C} = -24$, en vanaf punt D het donkerste momentenvlak met als maximum $M_{\rm E}^{\rm D} = -36$. We zitten dan weer op nul en het overblijvende witte momentenvlak is dan het gezochte momentenvlak.

12.2.6 LIGGER MET OVERSTEK Berekening door superpositie

Belasting door één puntlast op het overstek

We beschouwen vervolgens een ligger met dezelfde overspanning als in fig. [230-1], die nu aan de rechterzijde is voorzien van een overstek waarop één puntlast aangrijpt, zie fig. 1a. Verder is de ligger onbelast.

We nemen beide oplegreacties van de ligger omhoog gericht aan en berekenen op de gebruikelijke wijze de oplegreacties.

Bepaling oplegreacties:

 $\Sigma K_A = 0$: - $R_E * 12 + 8 * 15 = 0$ $R_E = 120 / 12 = 10 \text{ kN}$

 $\Sigma K_{\rm E} = 0:$ $+ R_{\rm A} * 12 + 8 * 3 = 0$ $R_{\rm A} = -24 / 12 = -2 \text{ kN}$

De oplegreactie R_A werkt dus in tegengestelde richting. In fig. 1b is de ligger overgetekend en zijn alle daarop werkende krachten in de juiste richting aangegeven.

Dwarskrachten

Voor de dwarskrachtenlijn kan de ligger tussen A en F in twee zones worden verdeeld waar de dwarskracht constant is. We werken weer van links naar rechts. Let op, we beginnen met een negatieve dwarskracht in A, vergelijk [224].

Dwarskrachten in kN:

A-E
$$V = -2$$
 = -2
E-F $V = -2 + 10$ = +8

Voor het tekenen van de momentenlijn behoeft alleen het moment in E maar te worden berekend. Aan elk uiteinde van de ligger moet het moment immers gelijk aan nul zijn omdat de daar aangrijpende kracht – vanaf de buitenkant gezien – nog geen 'arm' heeft. $M_{\rm E} = -2 * 12 = -24$ kNm

d. Momentenlijn

Superpositie van twee belastinggevallen

We gaan uit van dezelfde ligger als in fig. 1a, waarbij de puntlast op het overstek is aangebracht maar bovendien ook de puntlasten tussen de opleggingen volgens fig. [230-1], zie fig. 2a. De momentenlijn van fig. [231-2c] voor de ligger zonder overstek, geldt ook voor de ligger mèt overstek, zolang dit overstek onbelast is. In dat onderdeel is het moment dan gelijk aan nul. We hebben nu voor één en dezelfde ligger het momentenverloop voor twee belastinggevallen:

- I de puntlasten F_1 , F_2 en F_3 tussen de opleggingen A en E,
- II de puntlast F_4 op het overstek in punt F.

Van beide momentenlijnen noteren we nu de waarden van de momenten in de punten A, B, C, D, E en F, zie fig. 2b. Als we deze waarden in de overeenkomstige punten optellen vinden we zonder meer de momenten die gelden voor de combinatie van beide belastinggevallen, zoals is weergegeven in fig. 2c.

De puntlast op het overstek blijkt de momenten behoorlijk te verminderen.

In hoofdstuk 13 [275-2] zullen we zien dat een dergelijke superpositie ook heel eenvoudig grafisch kan worden uitgevoerd.

Een omlaag gerichte belasting op een overstek blijkt twee voordelen te kunnen bieden:

- 1. De absolute waarde van de buigende momenten neemt af,
- 2. de doorbuiging wordt minder, zie fig. 3.

Fig. 3

Modellen van de gevallen I, II en III van fig. 2

- I Holle vorm van de doorbuigingslijn A-E Het onbelaste liggerdeel E-F verplaatst wel, maar blijft verder volkomen recht
- II Bolle vorm van de doorbuigingslijn over de hele ligger A-F. De belasting in A is nodig om het opwippen van de ligger te voorkomen
- III De holle vorm van de doorbuigingslijn links, gaat nabij E over in een bolle vorm De doorbuiging is duidelijk verminderd

- Fig. 2 Ligger met overstek belast door een aantal puntlasten
- a. Schema van de belastinggevallen I en II
- b. Momentenlijnen voor belastinggeval I en II
- c. Superpositie van beide belastinggevallen

12.2.7 LIGGER MET OVERSTEK Rechtstreekse berekening

We beschouwen nogmaals de vrij opgelegde ligger met overstek van [232 - 233], waarbij we de belasting niet langer in twee afzonderlijke belastinggevallen splitsen, maar we de ligger rechtstreeks zullen berekenen, zie fig. 1a.

Oplegreacties

Berekening oplegreacties: $\Sigma K_A = 0$: $+8*3 + 4*6 + 12*9 - R_E*12 + 8*15 = 0$ $R_E = 276 / 12 = 23$ kN

 $\Sigma K_{\rm E} = 0$ $R_{\rm A} * 12 - 8 * 9 - 4 * 6 - 12 * 3 + 8 * 3 = 0$ $R_{\rm A} = 108 / 12 = 9 \text{ kN}$

Controle $\Sigma F_y = 0$: -9 + 8 + 12 - 23 + 8 = -32 + 32 = 0De ligger is dus in evenwicht onder invloed van de zes getekende krachten in fig. 1b.

- a. Schema
- b. Actie- en reactiekrachten

Dwarskracht

Berekening van de dwarskracht in kN (fig. 2a)			
A-B = +9	=	+ 9	
B-C = $+9 - 8$		+1	
C-D = +9 - 8 - 4	=	- 3	
D-E = +9 - 8 - 4 - 12	=	- 15	
E-F = +9 - 8 - 4 - 12 +	23 =	+ 8	

In de bovenstaande berekening is de dwarskracht in elke zone steeds weer bepaald als de resulterende kracht die op het gehele afgesneden stuk werkt. Als men de waarden van de dwarskrachtenlijn echter niet stuk voor stuk berekent, maar rechtstreeks tekent, dan verloopt dit sneller en overzichtelijker.

Tekenen van de dwarskrachtenlijn (fig. 2a, b)

- In punt A wordt de kracht van 9 kN in grootte en richting vanaf de nullijn uitgezet. Tot punt B houdt de dwarskrachtenlijn deze waarde.
- Vanaf punt B wordt een kracht van 8 kN naar beneden uitgezet. De resterende waarde van +1 kN blijft dan constant tussen B en C.
- In punt C gaan we weer 4 kN omlaag en komen dan uit op – 3 kN ten opzichte van de nullijn. Tussen C en D houdt de dwarskrachtenlijn deze waarde.
- In D wordt een kracht van 12 kN omlaag aangebracht waarbij we op -3 - 12 = -15 kN uitkomen.
- In punt E gaan we 23 kN omhoog en komen dan uit op -15 + 23 = +8 kN.
- Tussen E en F blijft de dwarskracht constant gelijk aan + 8 kN.
- In punt F gaan we weer 8 kN omlaag en komen dan uit op nul.

Vooral de controle in punt F is belangrijk, we moeten al doortellend op nul uitkomen en niet automatisch de waarde van de dwarskracht tot nul terugbrengen als we alle lasten zijn gepasseerd. Doen we dit wel, dan vallen fouten die onderweg zijn gemaakt niet op, en zullen alle verdere berekeningen ook onjuiste antwoorden opleveren.

Fig. 2 Ligger met overstek belast door een aantal puntlasten

- a. Ligger met actie- en reactiekrachten
- b. Tekenen van de dwarskrachtenlijn
- c. Momentenlijn

Fig. 3 Raatliggers

Raatliggers worden voornamelijk toegepast uit optische motieven. In de getoonde versie is een I-profiel met behulp van een snijbank via een zig-zag-lijn in lengterichting in twee delen verdeeld, die vervolgens enigszins verschoven weer aan elkaar worden gelast. Dit soort liggers is geschikt voor grote overspanningen met een lage belasting. Dit houdt in: relatief hoge momenten en lage dwarskrachten.

Momentenlijn

Voor de bepaling van de momentenlijn berekenen we de momenten in alle punten waar puntlasten aangrijpen [230]. De rechte verbindingslijnen van deze waarden vormen dan de momentenlijn. Nog eenmaal zijn weer alle puntlasten in de berekening opgenomen, ook als de arm hiervan gelijk is aan nul, zodat de betreffende term uit de vergelijking wegvalt (*M* in kNm).

$M_{\rm A} = +$	- 9*0		0
$M_{\rm B}$ = +	- 9*3 - 8*0	=	+ 27
$M_{\rm C}$ = +	-9*6 -8*3 -4*0	=	+ 30
$M_{\rm D}$ = +	-9*9 -8*6 -4*3 +		
_	12*0	=	+ 21
$M_{\rm E}$ = +	9*12 - 8*9 - 4*6 +		
_	12*3 +23*0	=	- 24
$M_{\rm F}$ = +	9*15 - 8*12 - 4*9 +		
_	12*6 + 23*3 - 8*0	=	0

Ook hier is consequent van links naar rechts gewerkt om de regelmaat in de opbouw van het moment te laten zien. Het is duidelijk dat van rechts naar links werkend het moment in punt F gelijk is aan nul en het moment in E gelijk is aan:

 $M_{\rm E} = -8*3 = -24$ kNm;

vergelijk de regels van 12.2.3 [227].

De momentenlijn kan nu gemakkelijk worden getekend, zie fig. 2c.

De momentenlijn komt uiteraard weer geheel overeen met die van fig. [233-2c].

12.2.8 VERWISSELBAARHEID VAN ACTIE- EN REACTIEKRACHTEN

Als de oplegreacties van een ligger eenmaal zijn bepaald, is de ligger in evenwicht onder invloed van een aantal krachten. Het doet hierbij dan niet meer ter zake wat de actiekrachten zijn en wat de reactiekrachten.

Een en ander wordt gedemonstreerd aan de vrij opgelegde ligger die alleen wordt belast met een puntlast F = 8 kN op het overstek, zie fig. 1b. De bijbehorende krachten en het momentenverloop zijn weergegeven in fig. 1a.

We kunnen de ligger echter evengoed beschouwen als een eenzijdig verend ingeklemde ligger, die wordt onderworpen aan een puntlast van 2 kN op het linker uiteinde, zie fig. 1c ('duikplank'). Het staat ons ook vrij om de ligger te beschouwen als een in één punt ondersteunde ligger in indifferent evenwicht, volgens fig. 1d ('wipplank').

Als we alle krachten van teken omdraaien, draait ook de momentenlijn van teken om en is alles nog steeds in evenwicht, zie fig. 1e.

We hebben dan weer het vertrouwde beeld van een in de uiteinden ondersteunde ligger, belast door een puntlast F = 10 kN, zie fig. 1f.

We kunnen de ligger echter ook in elk willekeurig punt ingeklemd denken via een dwarsligger of in één van de uiteinden, zie fig. 1g. Op het eerste gezicht lijkt dit dit vreemd, maar het staat ons uiteraard vrij om een ingeklemde ligger zodanig te belasten dat het moment bij de inklemming juist gelijk is aan nul.

Bij liggers met meerdere puntlasten kan men op precies dezelfde manier te werk gaan. We kunnen dan twee willekeurige krachten kiezen als de ondersteuningskrachten (rol + scharnier).

De andere krachten zijn dan automatisch de bijbehorende actiekrachten.

Als een ligger in evenwicht is onder invloed van een aantal krachten, dan kan hij als het ware vrij zweven in de ruimte en we kunnen dan altijd ter plaatse van twee krachten de ondersteuningen denken, zie fig. 2a.

- Fig. 1 Verwisselbaarheid van actie- en reactiekrachtena. Evenwicht van krachten met bijbehorende
 - momentenlijn
- b. Ligger met klein overstek
- c. Verend ingeklemde ligger
- d. In één punt ondersteunde ligger
 - Alle krachten van teken omgedraaid met bijbehorende momentenlijn
 - Vrij opgelegde ligger zonder overstek
- g. Eénzijdig ingeklemde ligger

e.

f.

12.2.9 VERVORMINGEN

Ter wille van de duidelijkheid zijn de vervormingen in de tekeningen altijd sterk overdreven weergegeven. In werkelijkheid zijn normale bouwconstructies meestal zò stijf, dat de vervormingen niet of nauwelijks zichtbaar zijn.

Alleen bij een plank over een sloot zijn we in staat een duidelijk doorgebogen ligger aannemelijk te maken.

De vervorming van een ligger of een ander constructiedeel is echter de enige grootheid die we ons vrij gemakkelijk kunnen voorstellen en die ook aan aan de hand van een eenvoudig model direct zichtbaar kan worden gemaakt. Alle andere grootheden, zoals oplegreacties, normaalkrachten en buigende momenten, moeten we berekenen. De *berekening* van de vervormingen is hierbij zelfs het meest ingewikkeld.

Aan de uitbuigingsvorm van een model van een ligger zijn direct de zone's te herkennen waar positieve momenten optreden en waar negatieve. Dit kan een uitstekende controle geven op een berekening, waar men niet al te zeker is van de uitkomsten.

Bedenk hierbij echter dat de vorm van de doorbuigingslijn geen enkel verband behoeft te hebben met de vorm van de momentenlijn.

Ter illustratie zijn belaste modellen weergegeven voor de belastinggevallen van fig. 1.

De uitgebogen vorm van de ligger blijft hierbij steeds hetzelfde, maar de zakkingen van de ligger kunnen sterk verschillen, afhankelijk van de randvoorwaarden, dat wil zeggen: de plaats van de ondersteuningen waar de zakking gelijk aan nul moet zijn. Bij de inklemming van fig. 2g is zowel de zakking als de hoekverdraaiing ter plaatse van de inklemming gelijk aan nul.

Bij de liggers met een groot overstek (c, d, g) is een extra krachtje nodig om het eigen gewicht van het overstek te compenseren, zie fig. 2e.

Fig. 2 Modellen van de liggers van fig. 1

- a. Vrij zwevend model van een ligger onder invloed van drie krachten
- b. Ligger met klein overstek
- c. Verend ingeklemde ligger
- d. In één punt ondersteunde ligger
- e. Compensatie van het eigen gewicht bij: c, d, g
- f. Vrij opgelegde ligger
- g. Eenzijdig ingeklemde ligger

12.3.1 ALGEMEEN

Een gelijkmatig verdeelde belasting is voor liggers in gebouwen verreweg de belangrijkste belasting. Enerzijds omdat het eigen gewicht van de ligger meestal volkomen gelijkmatig is verdeeld en anderzijds omdat we allerlei belastingen waar we niet al te zeker van zijn, in de berekening vervangen door gelijkmatig verdeelde belastingen, zie KW-0 [076 - 077].

Voor vrij opgelegde liggers (zonder overstek) en voor éénzijdig ingeklemde liggers, die uitsluitend worden belast door een gelijkmatig verdeelde belasting, kan zowel voor het dwarskrachtenverloop als voor het momentenverloop direct een analytische uitdrukking worden opgeschreven. In de volgende paragrafen worden uitsluitend enkele eenvoudige – maar wel zeer belangrijke – analytische oplossingen behandeld.

Indien de ligger slechts gedeeltelijk is volbelast door een varierende belasting, of als er tegelijkertijd ook puntlasten op de ligger aangrijpen, wordt een analytische berekening omslachtig. Daarom is in paragraaf 12.6 een berekeningsvariant geïntroduceerd, waarbij alle gelijkmatig verdeelde belastingen eerst worden vervangen door puntlasten. De snedemethode volgens paragraaf 12.3 kan dan op de normale wijze worden toegepast. Door vervolgens optimaal gebruik te maken van de eigenschappen van parabolen, kan ook het momentenverloop bij de gelijkmatig belaste gedeelten snel en eenvoudig worden weergegeven.

Voor dergelijke problemen bestaat ook een alternatieve berekeningswijze; het bepalen van de dwarskrachten door integratie van de belastingen en vervolgens het bepalen van de momenten door integratie van de dwarskrachten.

Dit klinkt moeilijker dan het is, omdat het integreren alleen maar bestaat uit het bepalen van het oppervlak van een diagram voor een doorsnedegrootheid. Deze methode wordt behandeld in hoofdstuk 13. Zoals reeds eerder is vermeld, wordt een gelijkmatig verdeelde belasting als een geheel of gedeeltelijk gearceerde strook aangegeven, zoals is weergegeven in fig. 1. Deze strook wordt zodanig getekend dat hij als het ware tegen de ligger aandrukt. Een verticale belasting omlaag wordt dus aan de bovenzijde van de ligger getekend en een verticale belasting omhoog aan de onderzijde. Bij verticaal staande liggers wordt een belasting naar rechts dus aan de linkerzijde getekend en een belasting naar links aan de rechterzijde, zie fig. 1c.

- Fig. 1 Liggers onder gelijkmatig verdeelde belasting waarvan het momentenverloop kan worden beschreven door één analytische functie
- a. Vrij opgelegde ligger
- b. Eenzijdig ingeklemde ligger
- c. Verticaal staande eenzijdig ingeklemde ligger, met belasting van links en van rechts

12.3.2 VRIJ OPGELEGDE LIGGER

We beschouwen een ligger op twee steunpunten die is belast door een gelijkmatig verdeelde belasting. De totale belasting bedraagt ql en de oplegreacties bedragen uit symmetrie-overwegingen elk ql/2, zie fig. 2a.

We beginnen met het aanbrengen van een snede op een afstand x vanaf de linker oplegging. In deze snede brengen we de dwarskracht V_x en het buigend moment M_x aan als positieve grootheden, zie fig. 2b (vergelijk zonodig [224-1a]). Vervolgens beschouwen we van het afgesneden deel zowel het verticale evenwicht als het momentenevenwicht.

Verticale evenwicht:
$$\Sigma F_y = 0$$

 $-\frac{ql}{2} + qx + V_x = 0$
 $V_x = \frac{1}{2} q (l - 2x)$ (4)

De dwarskracht verloop lineair en is gelijk aan nul voor x = l/2, zie fig. 1c.

Momentenevenwicht: $\Sigma K_{\rm S} = 0$

$$+\frac{q l}{2} x - q x \frac{x}{2} - M_{x} = 0$$

$$M_{x} = \frac{1}{2} q x (l - x)$$
(5)

Het buigend moment verloopt parabolisch, zie fig. 1d. Het maximale moment treedt op in het veldmidden voor x = l/2 en bedraagt:

$$M_{\rm max} = \frac{1}{8} q l^2 \tag{6}$$

Bij een ligger onder gelijkmatig verdeelde belasting verloopt de dwarskracht altijd lineair en het buigend moment altijd parabolisch.

Fig. 2 Vrij opgelegde ligger onder een q-last

a. Schemab. Beschouwing van het afgesneden deel met de

- resultante van de belasting op dat deel
- c. Dwarskrachtenlijnd. Momentenlijn

Fig. 3 Stalen hal met stalen kolommen en liggers. Plaatselijk zijn tussen twee aangrenzende kolommen verstijvingskruisen aangebracht

12.3.3 EENZIJDIG INGEKLEMDE LIGGER

Bij een eenzijdig ingeklemde ligger volgt de snelste oplossing door de afstand x vanaf het vrije uiteinde te kiezen, zie fig. 1a.

Beschouwing van het afgesneden linkerdeel in fig. 1b levert dan zowel een uitdrukking voor het verticale evenwicht als voor het momentenevenwicht. Ter plaatse van de snede S worden V_x en M_x beide weer als positieve grootheden aangenomen, ook al zien we wel dat de dwarskracht daar ter plaatse, in werkelijkheid omhoog moet werken.

Verticaal evenwicht: $\Sigma F_y = 0$ + $qx + V_x = 0$ $V_x = -qx$

Momentenevenwicht: $\Sigma K_{\rm S} = 0$

 $-qx * x/2 - M_x = 0$

$$M_x = -\frac{1}{2} q x^2$$
 (8)

De dwarskrachtenlijn en de momentenlijn zijn dan met behulp van de formules (7) en (8) gemakkelijk te tekenen.

Ter plaatse van de inklemming vinden we:

 $V_{\rm B} = -qa$ $M_{\rm B} = -1/2 qa^2$

De oplegreacties moeten dan gelijk zijn en tegengesteld gericht, zie fig. 1a.

De oplegreacties worden meestal rechtstreeks bepaald. Hierbij kan de gehele gelijkmatig verdeelde belasting door haar resultante worden vervangen. Denk er aan dat het dwarskrachtenverloop en het momentenverloop bij gelijkmatig verdeelde belastingen *nooit rechtstreeks* met behulp van de resultante mogen worden bepaald. Maar het gebruiken van de resultante kan wel een uitstekend hulpmiddel vormen, zoals is beschreven in 12.4 [242-253].

- Fig. 1 Eenzijdig ingeklemde ligger onder een constante gelijkmatig verdeelde belasting
- a. Schema

(7)

- b. Beschouwing van het afgesneden deel met de resultante van de belasting op dat deel
- c. Dwarskrachtenlijn
- d. Momentenlijn

12.3.4 LINEAIR VARIERENDE BELASTING

Waterdruk varieert lineair met de hoogte en voor gronddruk wordt dit eveneens aangenomen. Een verticale strook van een kelderwand kan dus in deze omstandigheden verkeren.

Bij een verticale ligger die in de bodem is ingeklemd en is onderworpen aan horizontale waterdruk verloopt de berekening als volgt. De belasting is gelijk aan, zie fig. 2a:

$$q_x = q_0 y \tag{9}$$

Hierin stelt q_0 de waterdruk voor op een diepte van 1 m. Beschouwt men een strook van 1 m breedte dan volgt: $q_0 = 10$ kN/m'.

De dwarskracht volgt door beschouwing van het horizontale evenwicht van het 'afgesneden' deel van de ligger, zie fig. 2b.

$$\Sigma F_{x} = 0:$$

$$-V_{y} + \frac{1}{2} q_{x} y = 0 \quad \text{ofwel}$$

$$-V_{y} + \frac{1}{2} q_{0} y^{2} = 0$$

$$V_{y} = \frac{1}{2} q_{0} y^{2} \quad (10)$$

NB: De grootheden V_y en F_y worden beide beschouwd als functie van de afstand y, de grootheden *werken* uiteraard in x-richting.

Het buigend moment volgt weer door de beschouwing van het momenten-evenwicht van het 'afgesneden' deel om punt S.

 $\Sigma K_{\rm S} = 0$:

$$M_{y} = \frac{1}{2} q_{0} y^{2} \frac{y}{3} = \frac{1}{6} q_{0} y^{3} \qquad (11)$$

Samenvatting:

De belasting verloopt lineair, zie fig. 2a. Het verloop van de dwarskracht is een (tweedegraads) parabool, zie fig. 2c.

Het verloop van het buigend moment is een derdegraads parabool, zie fig. 2d.

Als we zuiver formeel te werk gaan dan kunnen alle voorgaande uitkomsten worden verkregen door toepassing van integraalrekening [263]. Maar omdat we weten waar de zwaartepunten van een rechthoek en een driehoek liggen, kunnen we de gegeven vereenvoudigde berekeningen uitvoeren. In hoofdstuk 13 zullen we een en ander op een meer formele wijze behandelen, omdat hieruit een heel practische berekeningswijze voortvloeit, waarbij uit de gemakkelijk te bepalen dwarskrachtenlijn vrij snel de momentenlijn kan worden afgeleid.

Fig. 2 Eenzijdig ingeklemde ligger onder een lineair verlopende belasting

a. Schema

- b. Beschouwing van het afgesneden deel met de resultante van de belasting op dat deel
- c. Dwarskrachtenlijnd. Momentenlijn

12.4.1 PROCEDURE

De snedemethode kan eveneens worden toegepast als de belasting bestaat uit een combinatie van puntlasten en/of constante gelijkmatig verdeelde belastingen. Deze kunnen over een deel of de gehele lengte van de ligger aanwezig zijn. De snedemethode wordt voor de liggerdelen die gelijkmatig verdeeld zijn belast, echter op een wat andere wijze toegepast dan algemeen gebruikelijk is. Achtereenvolgens worden de volgende stappen genomen:

- 1. Het schema van de ligger wordt getekend met de daarop werkende puntlasten en gelijkmatig verdeelde belastingen, zie fig. 1a.
- 2. Elke constante gelijkmatig verdeelde belasting wordt vervangen door zijn resultante, zie fig. 1b.
- 3. De oplegreacties worden bepaald uit de evenwichtsvoorwaarden :

Vrij opgelegde ligger zie fig. 1c:

- $-\sum K_{\rm A} = 0 \quad \sum K_{\rm B} = 0$
- Controle: $\sum F_{y} = 0$
- Resultaat: $R_{\rm A}$; $R_{\rm B}$

Eenzijdig ingeklemde ligger zie fig. 1d:

- $\sum K_{\rm B} = 0$
- $\sum F_y = 0$
- Resultaat: $R_{\rm B}$; $K_{\rm B}$
- 4. Voor het bepalen van de momentenverdeling wordt uitgegaan van het schema met uitsluitend puntlasten volgens fig. 1c of 1d. Tegelijkertijd wordt ook de *q*-last met een stippellijn weergegeven, zie fig. 2a.
- 4a Als er over het gedeelte met de gelijkmatig verdeelde belasting ook puntlasten aangrijpen-uitwendige krachten of oplegreactiesdan wordt de gelijkmatig verdeelde belasting in moten verdeeld met de scheidingen tussen de moten ter plaatse van de puntlasten, zie fig. 3a, b.

- Fig. 1 Momentenlijn voor een vrij opgelegde ligger
- a. Schema met belastingen
- b. *q*-last vervangen door een puntlast
- c. Bepaling oplegreacties
- d. Bepaling oplegreacties bij een eenzijdig ingeklemde ligger

- 5. Bij het schema van fig. 2a wordt de momentenlijn op de gebruikelijke manier met een horizontale nullijn getekend, zie fig. 2b.
- 6. De getekende momentenlijn van fig. 2b is geldig in de onbelaste liggerdelen en ter plaatse van de oorspronkelijke puntlasten.
- 7. Ter plaatse van de gelijkmatig verdeelde belastingen wordt de geknikte momentenlijn vervangen door een vloeiend verlopende parabool, zie fig. 2c.

Dit is zeer eenvoudig omdat voor elke 'moot' gelijkmatig verdeelde belasting drie punten van de parabool bekend zijn met hun raaklijnen:

- de beide uiteinden van de parabool
- het midden van de parabool.

In [244] en [245] zijn de benodigde belastinggevallen voor de basis-liggers weergegeven:

- vrij opgelegde ligger zonder overstekken
 eenzijdig ingeklemde ligger
- In [246] en [247] worden enkele eenvoudige voorbeelden uitgewerkt. In [248] wordt een inzichtelijk gedachtenmodel besproken. In [249]

wordt een vrij opgelegde ligger met overstekken behandeld, die gelijkmatig verdeeld is belast. In [250 t/m 253] zijn – zonder veel commentaar – een aantal voorbeelden weergegeven.

- Fig. 2 Tekenen van de momentenlijn voor de vrij opgelegde ligger van fig. 1a
- a. Schema met uitsluitend puntlasten
- b. Bijbehorende momentenlijn
- c. Aanpassing van de momentenlijn over het gedeelte waar de *q*-last aangrijpt
- Fig. 3 Het vervangen van de gelijkmatig verdeelde belasting als er ook puntlasten op dit deel aangrijpen
- a. Schema van een ligger met overstek
- b. Splitsen van de gelijkmatig verdeelde belasting in twee moten

12.4.2 BASIS-BELASTING-GEVALLEN

Ligger op twee steunpunten

a. Gelijkmatig verdeelde belasting, zie fig. 1a: Parabolisch momentenverloop (bol) [239],

$$M_{\rm max} = \frac{1}{8} q l^2$$

b. Puntlast, zie fig.1b: Lineair momentenverloop [228],

$$M_{\max} = F \frac{ab}{l}$$

c. Puntlast ter grootte van de totale gelijkmatig verdeelde belasting (F = ql) aangrijpend ter plaatse van het veldmidden, zie fig. 1c.

$$M_{\text{max}} = \frac{1}{4} F l = \frac{1}{4} q l^2$$

Uit het momentenverloop van belastinggeval c. is het momentenverloop van belastinggeval a. gemakkelijk af te leiden, zie fig. 1d:

- Ter plaatse van de punten A en B raken beide momentenlijnen elkaar.
- In het midden van de overspanning is het moment ten gevolge van q gelijk aan de helft van dat ten gevolge van F.
- Voorts loopt de raaklijn aan de momentenlijn evenwijdig aan de nulijn.
- Op afstanden 1/4 l en 3/4 l vanuit A is de verhouding tussen beide momenten gelijk aan 3/4.

Herlees zonodig: Eigenschappen van parabolen in KW-1 [131].

- Fig. 1 Vrij opgelegde ligger met schema (1) en momentenlijn (2)
- a. Gelijkmatig verdeelde belasting
- b. Belasting door een puntlast
- c. Puntlast in het midden van de overspanning ter grootte F = q l
- d. Overgang van de momentenlijn voor geval c. op die van geval a.

Eenzijdig ingeklemde ligger

a. Gelijkmatig verdeelde belasting, zie fig. 2a: Parabolisch momentenverloop (hol) [240],

$$M_{\rm max} = -\frac{1}{2} q l^2$$

b. Puntlast Lineair momentenverloop, zie fig. 2b

$$M_{\rm max} = -Fb$$

c. Puntlast ter grootte van de totale gelijkmatig verdeelde belasting (F = ql) aangrijpend ter plaatse van het veldmidden, zie fig. 2c

$$M_{\rm max} = -\frac{1}{2}Fl = -\frac{1}{2}ql^2$$

Uit het momentenverloop van belastinggeval c. is het momentenverloop van belastinggeval a. weer gemakkelijk af te leiden als we de (gestippelde) hulplijn A-B tekenen, zie fig. 2d:

- Ter plaatse van de punten A en B raken beide momentenlijnen elkaar.
- Ten opzichte van de hulplijn A-B kunnen we de vorm van de parabool op dezelfde manier tekenen als in fig. 1d.

Herlees zonodig KW-1 [131].

- Fig. 2 Eenzijdig ingeklemde ligger met schema (1) en momentenlijn (2)
- a. Gelijkmatig verdeelde belasting
- b. Belasting door een puntlast
- c. Vervanging van de gelijkmatig verdeelde belasting door een puntlast
- d. Overgang van de momentenlijn voor geval c. in die van geval a.

12.4.3 PUNTLAST OP LIGGERS MET VERSCHILLENDE LENGTE

De punten op de liggers worden aangegeven als afstanden in m vanaf een vast nulpunt O dat voor alle liggers hetzelfde is, zie fig. 1a, b.

Geval I, zie fig. 1a: Ligger {3-7} met een puntlast in het midden van de overspanning {punt 5}. Puntlast F = 16 kN Liggerafmetingen: a = 2 m, b = 2 m, l = 4 m Oplegreacties en momenten: $R_3 = 8$ kN, $R_7 = 8$ kN $M_5 = +16$ kNm

Geval II, zie fig. 1b: Ligger $\{0.8\}$ met een grotere overspanning waarop dezelfde puntlast asymmetrisch is geplaatst {punt 5}. Puntlast F = 16 kN Liggerafmetingen: a = 5 m, b = 3 m, l = 8 m Oplegreacties en momenten: $R_0 = 6$ kN, $R_8 = 10$ kN $M_5 = +30$ kNm

De momentenlijn voor geval I kunnen we snel afleiden uit de momentenlijn voor geval II, zie fig. 1a, b. Ter plaatse van de opleggingen van ligger I {de punten 3 en 7} trekken we loodlijnen die de momentenlijn van ligger II snijden. De verbindingslijn van deze snijpunten vormt de nullijn voor de eerste ligger, zie fig. 1b.

Hier poneren we deze stelling alleen maar; bij controle blijkt het te kloppen.

In [248] wordt de procedure inzichtelijk gemaakt aan de hand van een gedachtenmodel.

Geval III, zie fig. 1c:

We beschouwen de puntlast uit fig. 1b als de resultante van een gelijkmatig verdeelde belasting tussen de punten 3 en 7, zodat q = 4 kN/m'. Volgens de procedure van fig. [244-1d] is de momentenlijn direct te schetsen.

- Fig. 1 Vrij opgelegde liggers met schema en momentenlijn
- a. Geval I: Overspanning 4 m
- b. Geval II: Overspanning 8 m
- c. Geval III: Geval II waarbij de puntlast wordt vervangen door een stuk gelijkmatig verdeelde belasting

Gelijkmatig verdeelde belasting over de gehele ligger of een deel daarvan

Geval IV, zie fig. 2a:

Bij de ligger van fig. 1c wordt de gelijkmatig verdeelde belasting q = 4 kN/m' aan weerszijden met één meter uitgebreid. Zij werkt dan over het liggerdeel {2-8}, zodat de resultante op hetzelfde punt aangrijpt als in fig 1c {punt 5}, maar uiteraard wel is toegenomen tot: 16 + 8 = 24 kN. We tekenen allereerst de momentenlijn voor de resultante, zie fig 2a:

$$F = 6 * 4 = 24$$
 kN, $M_5 = 45$ kNm.

Ter plaatse van de *q*-last wordt dan het lineaire momentenverloop vervangen door een parabolisch momentenverloop. Hierbij geldt:

M_2	= 2/5 * 45	= 18 kNm
M_5	= 9 + (45 - 9)/2	= 27 kNm
$M_{3,5}$	= 13,5 + 3/4 * 18	= 27 kNm
$M_{6,5}$	= 4,5 + 13,5	= 18 kNm

NB: hierboven zijn de momenten in een aantal punten precies uitgerekend. Wie redelijk nauwkeurig tekent, kan ze echter gemakkelijk uit de figuur opmeten.

Geval V, zie fig. 2b.

De gehele ligger $\{0-8\}$ is belast door een gelijkmatig verdeelde belasting q = 4 kN/m'.

 $M_{\rm max} = 1/8 * 4 * 8^2 = 32$ kNm

Als we de belasting door één puntlast vervangen is de momentenlijn nog steeds alleszins nauwkeurig te tekenen, zie fig. 2b.

Maar we kunnen de gelijkmatig verdeelde belasting ook in twee moten verdelen, zie fig. 2c. De nauwkeurigheid is dan weer verder vergroot.

Ter plaatse van een begrenzingslijn van een moot van de gelijkmatig verdeelde belasting vinden we altijd de exacte waarde van het moment en we kennen tegelijkertijd ook de richting van de raaklijn.

Op zo'n punt maakt het voor de berekening met de snedemethode immers niets uit of we de resultante van de moot beschouwen of dat we de gelijkmatig verdeelde belasting via een integraal in rekening brengen, zie hoofdstuk 13.

Fig. 2 Momenten bij vrij opgelegde liggers met *q*-last a. Over 3/4 deel van de ligger

- b. Over de gehele ligger (verdeling in één moot)
- c. Over de gehele ligger (verdeling in twee moten)

12.4.4 GEDACHTENMODEL

Om een beter inzicht te verkrijgen in datgene, wat we in de voorgaande bladzijden [246-247] eigenlijk hebben gedaan, zullen we gebruik maken van een gedachtenmodel.

We gaan uit van geval II [246-1c] en plaatsen op de hoofdligger $\{0-8\}$ een hulpliggertje $\{3-7\}$, waarop de puntlast F aangrijpt, zie fig. 1a.

Beschouwen we de hoofdligger met het hulpliggertje als één geheel dan vinden we uiteraard dezelfde oplegreacties en ook dezelfde momentenlijn als voorheen, zie fig. 1b. Beschouwen we het hulpliggertje en de hoofdligger elk afzonderlijk dan wordt het hulpliggertje belast door een puntlast F in het midden van de overspannning, waardoor een driehoekig momentenverloop ontstaat, zie fig. 1c.

De oplegreacties F/2 van het hulpliggertje veroorzaken in de punten 3 en 7 van de hoofdligger neerwaarts gerichte krachten F/2 op deze hoofdligger (actie = reactie), zie fig. 1d. De bijbehorende momentenlijn is eveneens weergegeven in fig. 1d. De momenten in de punten 3 en 7 zijn uiteraard gelijk aan die van fig. 1b. Tussen de punten 3 en 7 moet het moment lineair verlopen.

Dit betekent dat het resterende deel van het momentenvlak wordt opgenomen door het hulpliggertje.

Zolang de oplegreacties van het hulpliggertje niet veranderen, zal ook het momentenverloop in de hoofdligger niet veranderen. Dit houdt in dat de plaats en de grootte van de resultante van de belasting op het hulpliggertje niet mag veranderen.

Als we dus de puntlast van 16 kN vervangen door een gelijkmatig verdeelde belasting van: q = 16/4 = 4 kN/m' dan wordt uitsluitend het momentenverloop in het hulpliggertje gewijzigd, zie fig. 1e.

Als laatste stap laten we het hulpliggertje weer vervallen zodat de hoofdligger ook dit aandeel van het buigend moment moet overbrengen.

Fig. 1 Hoofdligger met hulpligger

a. Schema

- b. Momentenlijn voor beide liggers tezamen
- c. Hulpligger; schema en momentenverloop
- d. Hoofdligger; schema en momentenverloop
- e. Vervanging van de puntlast door een equivalente gelijkmatig verdeelde belasting, aangrijpend over de gehele lengte van de hulpligger

12.4.5 VRIJ OPGELEGDE LIGGER MET OVERSTEKKEN

Om het gemak van de methode te demonstreren zullen we een voorbeeld behandelen dat met behulp van numerieke integratie in hoofdstuk 13 een stuk moeizamer verloopt [276-277]. Het betreft een vrij opgelegde ligger met overstekken, gelijkmatig verdeeld belast, zie fig. 2a.

Berekening oplegreacties [276]. Het resultaat is weergegeven in fig. 2b. De gelijkmatig verdeelde belasting moet in drie moten worden verdeeld [242, punt 4a], zoals is weergegeven in fig. 2b.

 $F_1 = 4 * 4$ = 16 kN $F_2 = 8 * 4$ = 32 kN $F_3 = 2 * 4 = 8 \text{ kN}$ Momenten ter plaatse van alle puntlasten (indices geven de x-coördinaten van de ligger aan) Berekening van links: M_2 = 0 M_4 = -2 * 16 = -32 kNm = -6 * 16 + 35 * 4 = M_8 = -96 + 140 = +44 kNm Berekening van rechts: = -2 * 8 = -16 kNm M_{12} = 0 M_{13}

De bijbehorende momentenlijn is dik getrokken weergegeven in fig. 2c. De maximale negatieve momenten treden op ter plaatse van de reëel aanwezige puntlasten (de ondersteuningen); ze bezitten reeds de juiste waarde.

De rechte takken van de momentenlijn – die behoren bij de nieuw ingevoerde puntlasten – moeten nu worden vervangen door de parabolen die voor de gelijkmatig verdeelde belasting gelden. In fig. 2c zijn de bijbehorende hulplijnen dun gestippeld weergegeven. De vloeiend verlopende definitieve momentenlijn is dik getrokken weergegeven in fig. 2d.

We hebben nu niet de beschikking over de preciese numerieke waarde van het maximale positieve veldmoment. Deze kan echter zonder meer uit de tekening worden opgemeten. Wie toch staat op de exacte uitkomst zal aan de hand van de dwarskrachtenlijn moeten nagaan waar deze de nullijn snijdt [277]. Het buigend moment in dit punt kan dan weer met behulp van de snedemethode worden berekend, zie fig. [252-1b1,b2].

- Fig. 2 Vrij opgelegde ligger met overstekken, onder een gelijkmatig verdeelde belasting
- a. Schema van de ligger met oplegreacties
- b. Verdeling van de belasting in moten en vervanging door equivalente puntlasten
- c. Momentenlijn voor de puntlasten met hulplijnen en rondjes
- d. Definitieve momentenlijn voor de q-last

12.4.6 VOORBEELDEN STATISCH BEPAALDE LIGGERS

Zonder verder commentaar is een aantal liggers behandeld, waarbij afmetingen en belastingen zodanig zijn gekozen dat er eenvoudige uitkomsten voor de oplegreacties en de momenten uit voortvloeien. Positieve en negatieve momenten zijn alleen maar met hun buigteken weergegeven

Dit soort eenvoudige momentenlijnen moeten door de student (m/v) vlot kunnen worden berekend en getekend ! Achtereenvolgens zijn per figuur verstrekt:

- a. het oorspronkelijke schema
- b. het schema waarbij alle gelijkmatig verdeelde belastingen zijn vervangen door puntlasten
- c. de momentenlijn bij schema b.

0

Δ

Δ

16

1

2

q = 3 kN/m

12

3

d. de hiervan afgeleide momentenlijn bij de oorspronkelijke belasting volgens a.

De 'echte' puntlasten zijn voorzien van zwarte pijlpunten.

De puntlasten die dienen voor de vervanging van de q-lasten, hebben witte pijlpunten.

5

8 kN

8

6

12

32

26

7

8

2

Δ

40

40

NB: In fig. 2d blijft ter plaatse van de puntlast van 8 kN een knik in het momentenverloop aanwezig

.

Fig. 3 Gelijkmatig verdeelde belasting over het middelste derde deel van de ligger

Fig. 4 Gelijkmatig verdeelde belasting over de buitenste derde delen van de ligger

4

Fig. 6 Vrij opgelegde ligger met overstekken Gelijkmatig verdeelde belasting alleen op de overstekken

253 3 4 0 2 З 6 8 9 2 5 7 0 3 4 5 6 1 4 1 7 8 a q = 8 kN/mq = 2 kN/m'Δ Δ 24 kN 24 kN | 8 kN ∛ V Δ Д R = 048 Ī8 b 48 48 36 18 18 М 16 Μ 8 с 48 36 16 М М d 9 9

- Fig. 3 Vrij opgelegde ligger met een gelijkmatig verdeelde belasting op het overstek en op de helft van het liggerdeel tussen de steunpunten
- Fig. 4 Eenzijdig ingeklemde ligger met een gelijkmatig verdeelde belasting op de helft van de ligger

13 ALTERNATIEVE ANALYTISCHE BEREKENINGS-METHODEN

Berekening van liggers door middel van Integratie en Superpositie

13.1 INLEIDING

13.1.1 OVERZICHT BEREKENINGSMETHODEN

Snedemethode

Door toepassing van de snedemethode uit hoofdstuk 12 kunnen alle statisch bepaalde liggers met willekeurige belastingen worden berekend en kunnen de diagrammen voor de snedekrachten worden getekend; de zgn. *N*-, *V*- en *M*-lijnen. Er zijn echter twee andere analytische berekeningsmethoden waarmee we wat systematischer kunnen werken, namelijk door *integratie* en met behulp van *superpositie*.

Integratie

Door gebruik te maken van enkele eenvoudige stellingen uit de differentiaal- en integraalrekening kan men meer doelbewust te werk gaan. In principe kan men de dwarskrachten bepalen door integratie van de belastingen en de buigende momenten op hun beurt weer door integratie van de dwarskrachten. Het integreren gebeurt niet langs analytische weg maar door het bepalen van oppervlakken. Het is de meest universele manier voor het bepalen van momentenlijnen en de methode biedt nuttige controlemogelijkheden.

De methode wordt besproken in 13.3 t/m 13.5.

Superpositie

De meeste belastinggevallen kunnen worden gesplitst in twee (hoogstens drie) veel eenvoudiger belastinggevallen. Door deze meestal bekende 'basisbelastinggevallen' op een bepaalde manier bij elkaar op te tellen – te superponeren – komt men snel tot overzichtelijke resultaten.

Het is in het algemeen een zeer verhelderende methode die vooral bij statisch onbepaalde liggers in KW-5 en KW-6 zal worden toegepast. De resultaten van de benodigde 'basis-belastinggevallen' kunnen zowel met de snedemethode zijn verkregen als door integratie. De methode wordt besproken in 13.6.

13.2.1 ALGEMEEN

De grondbeginselen van de differentiaal- en integraalrekening worden in principe bekend verondersteld. Voor diegenen die deze stof maar oppervlakkig beheersen is in deze paragraaf een recapitulatie verstrekt van de toch vrij beperkte kennis die voor het vak KRACHTSWERKING noodzakelijk is.

13.2.2 FUNCTIES

Een wiskundige functie wordt in algemene termen meestal aangegeven door:

$$y = f(x) \tag{1}$$

De waarde van de functie voor x = a wordt aangeduid door y = f(a).

Als f(x) nader wordt gedefinieerd, dan kan van zo'n functie een grafische voorstelling worden getekend. In fig. 1 is dit weergegeven voor de functie:

$$y = -0.25 x^2 + 2.50 x - 4.00$$
 (2)

Hierbij noemt men x de onafhankelijk veranderlijke (variabele) en y de afhankelijk veranderlijke; x kan willekeurig worden gekozen, de bijbehorende y kan worden berekend of opgemeten uit de figuur.

Bij deze en de meeste andere functies die we zullen gebruiken, kan x elke waarde aannemen die tussen $-\infty$ en $+\infty$ ligt.

Voor ons doel hebben we meestal maar een heel klein stukje van zo'n functie nodig. We moeten daarom aangeven waar de grenzen van het geldigheidsgebied liggen.

In het geval van formule (2) zullen we alleen gebruik maken van waarden van *x* waarvoor geldt:

We zullen in [273] zien dat dit betrekking kan hebben op het momentenverloop in een vrij opgelegde ligger met overstek, waarbij dit echter alleen geldt voor het gedeelte tussen de steunpunten.

Toepassing voor het momentenverloop

Bij toepassing van dergelijke functies voor het momentenverloop kan dit slechts in incidentele gevallen door één en dezelfde formule worden beschreven. Dit is bijv. het geval als:

- Zowel de ondersteuningen als de uitwendige krachten alleen aan de uiteinden van de ligger aanwezig zijn.
- De ligger over de gehele lengte is belast door een gelijkmatig verdeelde belasting en de ligger geen overstekken bezit.

Zodra echter puntlasten tussen de opleggingen op de ligger aangrijpen of de gelijkmatig verdeelde belasting slechts plaatselijk aanwezig is, wordt de analytische berekening uiterst omslachtig. De ligger moet dan in een aantal delen worden gesplitst, waarbij elk deel zijn eigen formule krijgt.

Een zeer eenvoudig voorbeeld hiervan vormt de analytische behandeling van de ligger op twee steunpunten, die is belast door één puntlast, zie [228]. De momentenlijn bestaat hier uit twee verschillende analytische functies; in dit geval rechte lijnen.

Fig. 1 Grafische voorstelling van de functie:

$$y = -\frac{1}{4}x^2 + 2\frac{1}{2}x - 4$$

13.2.3 DIFFERENTIE-QUOTIENT EN DIFFERENTIAAL-QUOTIENT

Van een functie y = f(x) beschouwen we een willekeurig punt P (x_1, y_1) , d.w.z. het punt waarvan de coördinaten gelijk zijn aan x_1 en y_1 , zie fig. 1a. We geven x nu een kleine toename Δx en komen dan uit in punt Q (x_2, y_2) van de kromme. Hierbij geldt:

 $\Delta x = x_2 - x_1$ $\Delta y = y_2 - y_1$

De verhouding $\Delta y/\Delta x = \text{tg } \alpha$ wordt aangeduid als *differentie-quotiënt*. Bepalen we de limiet van dit differentie-quotiënt voor $\Delta x \rightarrow 0$, dan gaat de verhouding $\Delta y/\Delta x$ over in de helling van de raaklijn aan de kromme in punt P (fig. 1b). Deze helling is gelijk aan d $y/dx = \text{tg } \beta$.

De verhouding dy/dx wordt aangeduid als het differentiaal-qotiënt. Er geldt dus:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
(3)

In fig. 1b zijn beide grootheden aangegeven. Tussen Δx en dx is geen verschil, wel echter tussen Δy en dy.

13.2.4 DIFFERENTIEREN

In de wiskunde zijn regels afgeleid waarmee men voor een gegeven functie de helling van de raaklijn kan bepalen. Dit is in principe ook weer een functie in x, ze wordt de afgeleide functie genoemd. Men noemt dit proces differentiëren. Wij kunnen vrijwel altijd volstaan met de volgende zeer eenvoudige functies.

Functie

Afgeleide functie dy/dx = 0

y	= <i>C</i>	dy/dx = 0
y	$= x^n$	$dy/dx = n x^{n-1}$
y	$= \ln x$	dy/dx = 1 / x
y	$= \sin x$	$dy/dx = +\cos x$
y	$= \cos x$	$dy/dx = -\sin x$

Voorbeelden:

$$y = x^{3} dy/dx = 3x^{2}$$

$$y = x dy/dx = 1 x^{(1-1)} = x^{0} = 1$$

$$y = 1/x^{3} = x^{-3}$$

$$dy/dx = -3 x^{(-3-1)} =$$

$$= -3x^{-4} = -3/x^4$$

1

Fig. 1 Variatie van een functie

a. Differentie- quotiënt

b. Differentiaal-quotiënt

Als de oorspronkelijke functie wordt aangegeven door y = f(x), dan wordt de afgeleide functie aangegeven door dy/dx = f'(x). We gaan weer uit van formule (2):

$$y = -\frac{1}{4}x^{2} + 2\frac{1}{2}x - 4$$
 (4)

Door differentiatie volgt:

.

$$\frac{dy}{dx} = f'(x) = -\frac{1}{2}x + 2\frac{1}{2}$$
(5)

Van de functie f'(x) is eveneens een grafische voorstelling getekend, zie fig. 2b.

Op geheel overeenkomstige wijze als hiervoor is aangegeven, kan ook van deze functie weer de afgeleide functie worden bepaald. Ten opzichte van de oorspronkelijke functie f(x) noemt men dit de tweede afgeleide, die veelal wordt aangegeven met $d^2y/dx^2 = f''(x)$.

Hierbij staat d^2y / dx^2 ter afkorting van:

$$\frac{\mathrm{d}\frac{\mathrm{d}y}{\mathrm{d}x}}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$$

De tweede afgeleide van formule (4) – dus de eerste afgeleide van formule (5) - blijkt een constante te zijn ter grootte:

$$\frac{d^2 y}{dx^2} = -\frac{1}{2}$$
(6)

Het verloop van deze functie is weergegeven in fig. 2c.

Bij algebraïsche functies van hogere graad kan men de gevonden functie steeds weer verder differentiëren. Na $n \times$ differentiëren heeft men dan de n^{e} afgeleide bepaald: $d^{n}y / dx^{n} = f^{n}(x)$.

 $y = -0.25 x^2 + 2.50 x - 4.00$ a.

b.
$$dy / dx = -0,50 x + 2,50$$

c.
$$d^2 y / dx^2 = -0,50$$

13.2.5 INTEGREREN

Bij veel problemen blijkt het aanmerkelijk eenvoudiger te zijn om een uitdrukking op te stellen voor een *afgeleide* van de gezochte functie dan voor de gezochte functie *zelf*. Het bepalen van de oorspronkelijke functie vanuit de afgeleide functie noemt men *integreren*. Deze bewerking wordt aangegeven door het integraalteken \int . Integreren houdt dus in dat men de weg terug bewandelt. Men bepaalt de functie die na differentiatie weer de gegeven functie oplevert. Hieruit volgt:

$$\int dy/dx = y \tag{7}$$

Hieronder is in algemene termen het schema weergegeven voor het $2 \times$ differentiëren van een functie. Vervolgens is aangegeven hoe deze laatste functie door $2 \times$ integreren weer overgaat in de oorspronkelijke functie.

SCHEMA Differentiëren

$$y = f(x) \tag{a}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) \tag{b}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}y}{\mathrm{d}x} = f''(x) \qquad (c_1)$$

Integreren:

$$d \frac{dy}{dx} = f''(x) dx \qquad (c_2)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \int f''(x) \,\mathrm{d}x = f'(x) \tag{d}_1$$

$$dy = f'(x) dx \qquad (d_2)$$

$$y = \int f'(x) dx = f(x) \qquad (e)$$

In het bovenstaande zijn de formules (c_2) en (d_2) een herhaling van resp. de formules (c_1) en (d_1) , zij het iets anders geschreven. Ook voor het bepalen van de integraal van een functie worden in de wiskunde voor vele functies methoden en regels gegeven.

Als eerste blijkt dat men geen eenduidige oplossing kan verkrijgen; men dient aan de gevonden functie een zgn. integratieconstante C toe te voegen. Vergelijk hiertoe fig. 1; alle getekende functies bezitten immers dezelfde afgeleide functie.

Integreren is aanmerkelijk lastiger dan differentiëren. Heel populair gezegd zou men differentiëren kunnen vergelijken met het zorgvuldig uit elkaar nemen van een kant en klare legpuzzel.

Integreren is dan te vergelijken met het weer in elkaar zetten van de legpuzzel vanuit de losse stukjes. Hierbij moet men dan maar hopen dat er geen stukjes van de puzzel ontbreken of dat er twee puzzels door elkaar zijn geraakt. In gewoon Nederlands: lang niet alle functies zijn langs analytische weg te integreren.

Numeriek daarentegen kan het altijd, zie [260-261].

De te integreren functies die wij voorlopig tegen zullen komen zijn zeer eenvoudig van aard. Er behoeft uitsluitend gebruik te worden gemaakt van de volgende integralen, waarbij de integratieconstante – zoals gebruikelijk – is weggelaten. Men spreekt daarom van een *onbepaalde integraal*.

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} \qquad \int \frac{1}{x} dx = \ln x$$

 $\int \cos x \, \mathrm{d}x \, = \, + \sin x$

$$\int \sin x \, \mathrm{d}x = -\cos x$$

Voor praktische toepassingen komt er voor elke keer dat men verder integreert een integratieconstante bij. Zo levert tweemaal integreren van formule (6) [257] achtereenvolgens :

$$\frac{d^2 y}{dx^2} = -\frac{1}{2}$$
(6)

$$\frac{dy}{dx} = \int -\frac{1}{2} dx = -\frac{1}{2}x + C_1$$
 (5a)

$$y = \int (-\frac{1}{2}x + C_1) dx =$$

= $-\frac{1}{4}x^2 + C_1x + C_2$ (4a)

Zoals in [255] reeds is betoogd, gebruiken we van de analytische functie maar een klein stuk. Aan de randen van het begrenzingsgebied zijn we meestal in staat nadere voorwaarden op te geven waaraan de geïntegreerde functie of een van zijn afgeleiden dient te voldoen. Dit noemt men de zgn. *randvoorwaarden*, zie bijv. [270].

Voor het geval van fig. 1b zouden C_1 en C_2 bijv. kunnen worden bepaald als men weet dat het volgende geldt: voor x = 8 is y = 0 en voor x = 5 is dy/dx = 0Substitueert men deze waarden in de formules (5a) en (4a) dan volgt: $C_1 = 2,5$ en $C_2 = -4$.

Fig. 1 Drie kwadratische functies, die alleen een constante verschillen en daardoor dezelfde afgeleide bezitten

a.
$$y = -0.25 x^2 + 2.50 x - 6.00$$

 $y = -0.25 x^2 + 2.50 x - 4.00$
 $y = -0.25 x^2 + 2.50 x - 2.00$

b.
$$dy/dx = -0,50 x + 2,50$$

13.2.6 BEPAALDE INTEGRAAL

In fig. 1 is de grafische voorstelling weergegeven van een functie y = f(x).

We beschouwen nu het oppervlak tussen de kromme, de nullijn en twee willekeurig gekozen verticale begrenzingslijnen x = a en x = b. In fig. 1a is dit oppervlak met een raster weergegeven. Per definitie noemt men dit oppervlak: de bepaalde integraal van de functie y = f(x)tussen de grenzen a en b.

Om het verband tussen een onbepaalde en een bepaalde integraal te kunnen aantonen, beschouwen we het oppervlak van de figuur tussen een vaste ondergrens x_0 en een veranderlijke bovengrens x, zie fig. 1b. De waarde van de integraal is dan een functie van de bovengrens x.

We geven deze functie aan door g(x).

De functie g(x) stelt dus het oppervlak voor van de licht gerasterde figuur tussen de vaste ondergrens x_0 en de veranderlijke bovengrens x.

Geven we x nu een aangroeiing Δx , dan is de aangroeiing van g(x) gelijk aan het oppervlak van de wat donkerder gerasterde figuur. Dit oppervlak is met goede benadering gelijk aan:

$$\Delta g(x) = \Delta x \frac{f(x) + f(x + \Delta x)}{2}$$

Het differentie-quotient van de functie g(x) is dan gelijk aan $\Delta g(x)/\Delta x$, dat wil zeggen: het oppervlak van de gerasterde figuur gedeeld door Δx en de waarde ligt dus in tussen f(x) en $f(x + \Delta x)$.

In de limiet voor $\Delta x \rightarrow 0$ gaat het differentiequotiënt dan over in het differentiaal-quotiënt dg(x)/dx, dat gelijk blijkt te zijn aan f(x). Met andere woorden: de functie g(x) is een onbepaalde integraal van de functie f(x).

Fig. 1 Functie y = f(x)

a. Definitie van een oppervlak als een bepaalde integraal

b. Aangroeiing van de bepaalde integraal g(x)

We beschouwen nu weer het oppervlak tussen de grenzen a en b van fig. 1a. Hierbij geldt:

$$g(a) = \int_{x_0}^{a} f(x) dx$$
 $g(b) = \int_{x_0}^{b} f(x) dx$

Hieruit volgt:

$$\int_{a}^{b} f(x) dx = g(b) - g(a)$$
(8)

Analytisch integreren

Als de onbepaalde integraal van een functie langs analytische weg is berekend, kan de bepaalde integraal als volgt worden gevonden. Achtereenvolgens worden de bovengrens en de ondergrens in de onbepaalde integraal gesubstitueerd en vervolgens worden beide waarden van elkaar afgetrokken. Daar in beide uitdrukkingen dezelfde (nog onbekende) integratieconstante *C* voorkomt, valt deze dus weg.

Dit soort bewerkingen is bijv. reeds uitgevoerd in KW-0 [038].

Voorbeeld

Gegeven is de functie:

f(x) = -0,50 x + 2,50

Gevraagd: bereken de waarde van de bepaalde integraal tussen de grenzen x = 0 en x = 5. De berekening verloopt als volgt:

$$\int_{0}^{5} \left(-\frac{x}{2} + 2\frac{1}{2}\right) dx = \left[-\frac{1}{4}x^{2} + 2\frac{1}{2}x\right]_{0}^{5} = \left\{\left(-\frac{25}{4} + 12\frac{1}{2}\right) - (0 + 0)\right\} = \left[-\frac{1}{4} + 12\frac{1}{2}\right] = \left(-\frac{1}{4} + 12\frac{1}{2}\right) = 0$$

In fig. 2 is zowel de oorspronkelijke functie uitgezet als de geïntegreerde functie (die is getekend voor $C_2 = -4$), vergelijk ook fig. [259-1]. Van de functie g(x) wordt dan het verschil in ordinaten bepaald voor x = 5 en x = 0. Volgens formule (8) bedraagt dit verschil: g(5) - g(0) = 2,25 - (-4) = 6,25Voor een andere integratieconstante (dus voor een andere hoogteligging van de kromme) vinden we uiteraard hetzelfde verschil.

Grafisch integreren

Gegeven is de functie (zie fig. 2a): f(x) = -0.50 x + 2.50Gevraagd: bereken de bepaalde integraal van deze functie tussen de grenzen:

x = 0 en x = 2.

Deze waarde is dan gelijk aan het gerasterde oppervlak van fig. 2a:

$$g(2) - g(0) = 2 * 2 = 4$$

De maximale toename van de integraal treedt op tussen x = 0 en x = 5, daarna neemt het oppervlak weer af.

g(5) - g(0) = 0.5 * 5 * 2.5 = 6.25

a. Oorspronkelijke functie f(x)

b. Geïntegreerde functie g(x)(getekend voor C = -4)

13.3.1 EVENWICHTS-BESCHOUWINGEN OP EEN LIGGER-ELEMENTJE

Er wordt een ligger beschouwd met een willekeurig variërende belasting, zie fig. 1a. Ter bepaling van de gedachte is deze ligger ondersteund door een scharnier en een rol; de wijze van opleggen is voor de volgende beschouwingen echter niet van belang.

Van deze ligger beschouwen we een smal mootje ter lengte Δx . Aangezien de dwarskracht en het buigend moment in elk punt van de ligger zullen variëren als functie van de afstand x, worden ze aangegeven met V_x en M_x in de linker doorsnede van het elementje, zie fig. 1b.

In de rechter doorsnede zijn deze grootheden dan toegenomen tot $(V_x + \Delta V_x)$ en $(M_x + \Delta M_x)$. Ook de belasting zal variëren; ze neemt toe van q_x tot $(q_x + \Delta q_x)$. Ter wille van de eenvoud wordt voor de belasting echter uitgegaan van de gemiddelde waarde van q_x over Δx .

Verticaal evenwicht

Het verticale evenwicht volgt uit de voorwaarde $\Sigma F_y = 0$

Let op, q en V werken beide in y-richting, de indices x geven hier alleen aan dat de grootheden worden beschouwd als functie van de afstand x.

$$-V_x + q_x \Delta x + (V_x + \Delta V_x) = 0$$

Dit kan weer worden geschreven als:

$$q_x = -\frac{\Delta V_x}{\Delta x} \tag{9a}$$

De belasting q_x op een elementje is gelijk aan de afname van de dwarskracht gedeeld door de lengte van het elementje (afname vanwege het min-teken).

In de limiettoestand geldt dus:

$$q_x = -\frac{\mathrm{d}V_x}{\mathrm{d}x} \tag{9b}$$

- Fig. 1 Ligger met willekeurig variërende belasting a. Schema van de ligger
- b. Beschouwing van een elementair mootje van de ligger, onderworpen aan de daar optredende snedekrachten

Momenten-evenwicht

Voor de bepaling van het momenten-evenwicht van het elementje wordt de voorwaarde $\Sigma K = 0$ opgemaakt om een punt Q van de rechterdoorsnede van het elementje:

$$M_x + V_x \Delta x - q_x \Delta x \frac{\Delta x}{2} - (M_x + \Delta M_x) = 0$$

De derde term in de vergelijking $1/2 q_x (\Delta x)^2$ is oneindig klein van hoger orde en mag worden verwaarloosd ten opzichte van de overige termen. Men vindt dan:

$$V_x = \frac{\Delta M_x}{\Delta x} \tag{10a}$$

De dwarskracht is gelijk aan de toename van het moment gedeeld door de afstand waarover deze toename plaatsvindt.

In de limiettoestand kan dit weer worden geschreven als:

$$V_x = \frac{\mathrm{d}M_x}{\mathrm{d}x} \tag{10b}$$

Door (9b) en (10b) te combineren kan de belasting direct als de tweede afgeleide van het buigend moment worden weergegeven.

$$q_x = -\frac{\mathrm{d}^2 M_x}{\mathrm{d}x^2} \tag{11}$$

Door integratie gaan de formules (9b), (10b) en (11) over in:

$$V_x = -\int q_x \,\mathrm{d}x \tag{12}$$

$$M_x = + \int V_x \, \mathrm{d}x \tag{13}$$

$$M_x = -\iint q_x \,\mathrm{d}x \tag{14}$$

Uit formule (14) volgt dat bij een gegeven belasting het moment kan worden gevonden door $2 \times$ te integreren.

Ter illustratie is dit procédé in [270] geheel langs analytische weg uitgevoerd voor een vrij opgelegde ligger en een uitkragende ligger onder gelijkmatig verdeelde belasting.

Voor praktische toepassingen wordt dit dubbel integreren echter grafisch uitgevoerd, en wel in twee stappen. Eerst worden de dwarskrachten bepaald door integratie van de belastingen {formule (12)} en vervolgens de buigende momenten door integratie van de dwarskrachten {formule (13)}.

Een en ander verloopt vrij gemakkelijk, omdat alleen maar de oppervlakken behoeven te worden bepaald van de diagrammen voor de belasting en de dwarskracht, zoals wordt behandeld in [264] en [265].

Het tweemaal integreren van de belasting kan ook rechtstreeks gebeuren met behulp van een grafische methode (poolfiguur en stangenveelhoek, zie KW-1). Dit wordt in KW-2 beknopt behandeld in hoofdstuk 14 [292].
13.3.2 BEPALING DWARSKRACHTEN

In figuur 1a is een liggerdeel weergegeven onder een willekeurig variërende belasting q_x . De toename van de dwarskracht over een afstand dx volgt uit (9b) en bedraagt:

$$\mathrm{d}V_x = -q_x \,\mathrm{d}x \tag{9c}$$

Uit het min-teken volgt dat de dwarskracht afneemt bij toenemende x.

Door integratie vinden we:

$$V_x = -\int q_x \,\mathrm{d}x \tag{12}$$

Formule (12) kan als een bepaalde integraal worden geschreven, waarbij de toename van de dwarskracht wordt bepaald tussen de doorsneden x_1 en x_2 .

$$V_{x2} - V_{x1} = -\int_{x1}^{x2} q_x \, dx$$
 (15a)

De bepaalde integraal achter het gelijkteken stelt het oppervlak A_q voor van het belastingvlak tussen de doorsneden x_1 en x_2 , zie fig. 1a. Men kan formule (14a) dan ook schrijven als:

$$V_{x2} = V_{x1} - A_q$$
 (15b)

Als de dwarskracht in een bepaalde doorsnede x_1 bekend is, kan de dwarskracht in een wat verderop gelegen doorsnede x_2 gemakkelijk worden bepaald uitgaande van V_{x1} , zie fig. 1b.

Men behoeft dan niet zoals bij de snedemethode weer het gehele 'afgesneden' stuk van de ligger te beschouwen met alle krachten die daarop aangrijpen.

- Fig. 1 Ligger onder een willekeurig varierende belasting
- a. Schema van de ligger
- b. Dwarskrachtenvlak

Fig. 2 Hal in gelamineerd hout

Tweebeukige portalen [203] met hoofdliggers.

De portalen worden in hanteerbare stukken aangevoerd en ter plaatse van de momentennulpunten aan elkaar bevestigd, vergelijk [289]. De bevestiging gebeurt met stalen strippen, die inwendig kunnen worden aangebracht in uitgespaarde sleuven, maar ook uitwendig. In de drie opeenvolgende overspanningen aan de rechterzijde is de plaats van de momentennulpunten duidelijk zichtbaar.

13.3.3 BEPALING VAN DE MOMENTEN

Als het dwarskrachtenvlak bekend is, kan de toename van het moment worden bepaald met behulp van formule (10b):

$$\mathrm{d}M_x = V_x\,\mathrm{d}x\tag{10c}$$

Door integratie volgt:

$$M_x = + \int V_x \,\mathrm{d}x \tag{13}$$

Formule (13) kan weer als een bepaalde integraal worden geschreven, waarbij de toename van het moment wordt bepaald tussen de doorsneden x_1 en x_2 .

$$M_{x2} - M_{x1} = \int_{x1}^{x2} V_x \, \mathrm{d}x$$
 (16a)

De bepaalde integraal achter het gelijkteken stelt het oppervlak A_V voor van het dwarskrachtenvlak tussen de doorsneden x_1 en x_2 (fig. 3a). Men kan formule (16a) dan ook schrijven als:

$$M_{x2} = M_{x1} + A_V$$
 (16b)

Als het moment in een doorsnede x_1 bekend is, kan men van dit moment uitgaande, het moment in een wat verderop gelegen doorsnede x_2 gemakkelijk bepalen, zie fig. 3b.

Bij M_{x1} wordt dan het oppervlak van het dwarskrachtenvlak – tussen x_1 en x_2 – opgeteld, zodat men zeker wat de momenten betreft, sneller en eenvoudiger werkt dan met de snedemethode.

- Fig. 3 Bepaling van de momenten uit het dwarskrachtenvlak
- a. Dwarskrachtenlijn
- b. Momentenlijn

Fig. 4 Hal met gelijk hoge liggers in x- en y-richting. Liggers van gelamineerd hout, ondersteund door stalen kolommen

13.3.4 BEHANDELING PUNTLASTEN

Alle voorgaande beschouwingen zijn gebaseerd op een gelijkmatig verdeelde belasting en niet op puntlasten. De vraag rijst hoe deze moeten worden behandeld bij deze berekeningswijze. In werkelijkheid komen echte puntlasten – zoals getekend in fig. 1a – niet voor; er is in de praktijk steeds sprake van een grote belasting die (min of meer) gelijkmatig is verdeeld over een klein oppervlak, zoals is weergegeven fig. 2a.

Dwarskracht

In het rekenschema maken we er ons echter niet druk om hoe groot q_1 is met de bijbehorende afstand Δx_1 , maar stellen we ons tevreden met de wetenschap dat de bepaalde integraal volgens formule (15a) juist gelijk is aan de grootte van de puntlast F_1 . Daarom kunnen we de dwarskracht sprongsgewijs laten varieren, zoals is aangegeven in fig. 1b, in plaats van ze steil te laten verlopen tussen de dicht bij elkaar gelegen doorsneden x_1 en x_2 , zoals is aangegeven in fig. 2b.

Moment

In onbelaste liggerdelen is de dwarskracht constant en gelijk aan de helling van de momentenlijn, vergelijk fig. 1b met 1c. De momentenlijn moet ter plaatse van de puntlast dus een knik vertonen. Bij de sterk geconcentreerde belasting q_1 in fig. 2a veroorzaakt de lineair verlopende dwarskracht over Δx_1 weer een parabolisch momentenverloop tussen x_1 en x_2 , zoals uitvoerig is behandeld in 11.4.

Buiten dit gebiedje zijn de momentenlijnen van fig. 1c en 2c precies aan elkaar gelijk. In fig. 2c raakt de parabool in x_1 en x_2 aan de rechte takken van de momentenlijn.

- Fig. 1 LINKS: Gebruikelijke behandeling van puntlasten
- Fig. 2 RECHTS: Vervanging door een sterk geconcentreerde gelijkmatig verdeelde belasting over een kleine afstand $(q_1 * \Delta x_1 = F_1)$
 - Belasting

a.

b.

c.

- Dwarskrachtenlijn
- Momentenlijn

13.3.5 EXTREME MOMENTEN

Als de dwarskrachtenlijn de nullijn passeert – onverschillig of dit sprongsgewijs gebeurt of continu verlopend – gaat de helling van de momentenlijn over van een positieve waarde in een negatieve, of omgekeerd, zie fig. 3 en 4.

Dit betekent dat het moment een extreme waarde bereikt; de momenten direct links en rechts van het beschouwde punt zijn beide kleiner (ofwel beide groter) dan het moment in het beschouwde punt.

Neem nooit klakkeloos aan dat de voorwaarde: $V_x = 0$ tegelijkertijd inhoudt dat M_x maximaal moet zijn. Het moment kan ook heel goed minimaal zijn, zie bijv. [270-2].

Voorbeeld

In fig. 5 is een ligger weergegeven die in evenwicht is onder invloed van een aantal puntlasten. Omdat deze lasten afwisselend omhoog en omlaag zijn gericht, passeert de dwarskrachtenlijn de nullijn bij ieder puntlast. Onder elke puntlast treedt dus een plaatselijk maximum of minimum op en we moeten alle extrema vergelijken om de maatgevende momenten te vinden. In fig. 5 treden alleen positieve momenten op en het maatgevende moment bedraagt M = +7,5 kNm.

Als een momentenlijn uit rechte delen bestaat kan de dwarskracht in elk onderdeel van de ligger gemakkelijk worden bepaald met behulp van differentiequotiënten, zie fig. 5b, c.

Zo vindt men bijv. voor het liggerdeel A-B: $V_{A-B} = (M_B - M_A) / l_{A-B}$

In een iets andere schrijfwijze volgt:

Deel A-B:
$$V = \frac{\Delta M}{\Delta x} = \frac{+7,5-0}{3} = +2,5$$
 kN

Deel B-C:
$$V = \frac{\Delta M}{\Delta x} = \frac{+3-7,5}{3} = -1,5$$
 kN

Op overeenkomstige wijze kunnen ook de andere dwarskrachten worden bepaald.

267

13.4.1 BELASTING OVER DE GEHELE LENGTE VAN DE LIGGER

Als het verloop van de belasting over de gehele lengte van de ligger door één analytische functie kan worden beschreven, kunnen de dwarskrachten en momenten door analytische integratie worden bepaald en wel door gebruik te maken van de formules (12) en (13) [263].

Aangezien we vrijwel altijd te maken hebben met een *constante* gelijkmatig verdeelde belasting, zullen we ons bij de voorbeelden tot deze belasting beperken.

Voor de constante gelijkmatig verdeelde belasting voeren we in: $q_x = q$.

De berekening verloopt dan als volgt:

$$q_x = q$$

$$V_x = -\int q \, \mathrm{d}x = -q \, x + C_1 \qquad (17)$$

$$M_x = + \int V_x \, dx = + \int (-q \, x + C_1) \, dx =$$

$$= -1/2 q x^2 + C_1 x + C_2$$
(18)

De constanten C_1 en C_2 volgen uit de vereiste waarden van de dwarskracht of het buigend moment, die we aan één of beide uiteinden van de ligger weten aan te geven.

Bij deze zgn. geïdealiseerde randvoorwaarden betekent dit, dat daar of de dwarskracht of het buigend moment gelijk aan nul moet zijn.

Het vinden van de juiste randvoorwaarden zal zeker voor de beginner niet altijd even gemakkelijk zijn.

Als algemene regel kan uit de formules (17) en (18) echter het volgende worden geconcludeerd: Bij een gelijkmatig verdeeld belaste ligger verloopt de dwarskracht altijd lineair en het buigend moment altijd parabolisch. We zullen de constanten in de formules (17) en (18) bepalen voor de twee 'standaardliggers' :

- een vrij opgelegde ligger
- een eenzijdig ingeklemde ligger

Beide liggertypen zijn reeds in formule uitgewerkt in [239 en 240]. Bij de berekeningen in [270-271] volgen uiteraard dezelfde uitkomsten. Het doel is echter, om alvast enig begrip bij te brengen voor een rekenmethode die in KW-5 voor een aantal standaard-belastinggevallen zal worden toegepast. Die geldt dan niet alleen voor de bepaling van de dwarskrachten en de momenten, maar ook voor de hoekverdraaiingen en de doorbuiging van liggers.

Voorts zijn in [273] formules verstrekt voor een vrij opgelegde ligger met overstek, eveneens onder een gelijkmatig verdeelde belasting. Hierbij moeten voor het overstek en het liggerdeel tussen de opleggingen, aparte formules worden gebruikt. Een en ander is gedaan ter toetsing van onze kennis omtrent extreme momenten. Er wordt van de lezer niet verwacht dergelijke analytische formules ook zelf af te leiden.

13.4.2 DE BELASTING ONTBREEKT OP EEN LIGGERDEEL

Indien op een liggerdeel geen belasting aanwezig is, gaan de algemene formules (17) en (18) over in:

$$V_x = C_1 \tag{19}$$

$$M_x = C_1 x + C_2 (20)$$

In zo'n liggerdeel is de dwarskracht constant en verloopt het buigend moment lineair. Als liggers belast zijn door puntlasten, dan geldt dit dus altijd voor de liggerdelen tussen de puntlasten. Bij de snedemethode van paragraaf 12.2 zijn we dit geregeld tegengekomen.

Wat toen echter heel gewoon verliep, wordt bij een strikt analytische oplossingsmethode zeer gecompliceerd. Voor elk liggerdeel tussen twee opeenvolgende puntlasten worden dan twee constanten ingevoerd. Deze moeten weer worden geëlimineerd door bij elke aansluiting van twee liggerdelen te eisen dat de dwarskracht met de grootte van de puntlast afneemt en dat de buigende momenten daar ter plaatse gelijk zijn.

Bij puntlasten wordt daarom altijd de algemeen gangbare numerieke methode gevolgd die wordt beschreven in [274-275].

Dwarskracht gelijk aan nul

Indien over een liggerdeel de dwarskracht gelijk is aan nul, volgt uit (19) dat $C_1 = 0$, zodat het buigend moment gelijk is aan $M_x = C_2$. Het buigend moment is in zo'n geval dus constant, zie fig. 1.

- Fig. 1 Symmetrisch belaste ligger
- a. Schema
- b. Dwarskrachtenlijn
- c. Momentenlijn

13.4.3 BEREKENING VAN DE **STANDAARDLIGGERS**

Vrij opgelegde ligger

• Voor een vrij opgelegde ligger kunnen de volgende randvoorwaarden worden opgesteld, zie fig. 1a:

voor	x	=	0	geldt:	$M_x =$	0	(21)
voor	x	=	l	geldt:	$M_x =$	0	(22)

Substitutie van (21) in [268-(18)] levert: $0 = 0 + 0 + C_2$ \rightarrow $C_2 = 0$ Substitutie van (22) in [268-(18)] levert: $0 = -\frac{1}{2} q l^2 + C_1 l + C_2 \quad \rightarrow \quad C_1 = \frac{1}{2} q l$

Substitutie van C_1 en C_2 in [268-(17) en (18)] levert dan voor de dwarskracht en het moment:

$$V_x = -q x + \frac{1}{2} q l = q (l/2 - x)$$
(17a)

$$M_x = -\frac{1}{2} q x^2 + \frac{1}{2} q l x =$$

$$= +\frac{1}{2} q x (l - x)$$
(18a)

De formules (17a) en (18a) zijn volkomen identiek aan de reeds eerder afgeleide formules: [239-(9)] resp. [239-(10)].

Eenzijdig ingeklemde ligger

□ Voor een eenzijdig ingeklemde ligger kunnen de volgende randvoorwaarden worden opgesteld, zie fig. 2a:

Voor x = 0 geldt: $V_x = 0$ (23)Voor x = 0 geldt: $M_x = 0$ (24)

Substitutie van (23) in [268-(17)] levert: $0 = 0 + C_1 \rightarrow$ $C_1 = 0$ Substitutie van (24) in [268-(18)] levert: $0 = 0 + 0 + C_2 \rightarrow$ $C_2 = 0$ De vergelijkingen (17) en (18) voor de dwarskracht en het moment gaan dan over in:

$$V_x = -q x \tag{17b}$$

$$M_x = -1/2 \ q \ x^2 \tag{18b}$$

De formules (17b) en (18b) zijn weer gelijk aan de vorige formules [240-(12) en 240-(13)].

- Fig. 2 Eenzijdig ingeklemde ligger
- Schema a.

a.

b.

c.

- b. Dwarskrachtenlijn
- c. Momentenlijn

Vergelijking van beide momentenlijnen

Om duidelijk te maken dat het momentenverloop bij een gelijkmatig verdeelde belasting altijd parabolisch is, worden de formules voor de vrij opgelegde ligger en de eenzijdig ingeklemde ligger met elkaar vergeleken. De formules kunnen als volgt worden herschreven:

Vrij opgelegde ligger:

$$M_x = - \frac{1}{2} q x^2 + \frac{1}{2} q l x \qquad (18a)$$

Eenzijdig ingeklemde ligger ligger:

$$M_x = -1/2 \ q \ x^2 \tag{18b}$$

De kwadratische term (parabool) is voor beide gevallen precies dezelfde, de vrij opgelegde ligger heeft echter nog een tweede term, die lineair is in x. Voor de vrij opgelegde ligger worden nu beide termen afzonderlijk uitgezet, zie fig. 3b. Het verloop van het negatieve momenten-aandeel voor de vrij opgelegde ligger is dus precies hetzelfde als voor de uitkragende ligger, maar het lineair verlopende deel levert een positief moment op, dat voor x = l precies dezelfde grootte bezit als het negatieve moment.

Om het (algebraïsche) verschil tussen het negatieve en het positieve moment duidelijk zichtbaar te maken, wordt het positieve momentenaandeel gespiegeld om de nullijn en over het negatieve momentenverloop heen geplaatst, zie fig. 3c. Waar beide momentenlijnen elkaar opheffen ziet men een kruisraster. Het overblijvende deel met een verticaal raster geeft dan het verloop van het positieve moment aan. De nullijn voor het positieve moment verloopt dan niet langer horizontaal.

Min of meer analoge wijzen van spiegelen van momentenlijnen worden behandeld bij het superponeren van momentenlijnen in paragraaf 13.6 [279-281].

- Fig. 3 Vergelijking van de momentenlijn voor de vrij opgelegde ligger met die van de eenzijdig ingeklemde ligger
- a. Schema's
- b. Negatief en positief momentenaandeel elk afzonderlijk uitgezet
- c. Spiegelen van het positieve momentenaandeel levert het uiteindelijke momentenverloop

13.4.4 CONTROLE VAN DE MAXIMALE MOMENTEN

Voor een goed begrip zal het woord *maximum* worden gebruikt voor een zo groot mogelijke absolute waarde van het moment (vergeleken met de momenten in de directe omgeving van dat maximum), zie fig. 1. We kunnen dan spreken van een positief of een negatief maximum.

Onder een *minimum* wordt dan verstaan een zo klein mogelijke absolute waarde van het moment, dat zowel positief als negatief kan zijn, maar meestal gelijk zal zijn aan nul.

Het woord *extremum* (extreme waarde) omvat beide begrippen, maximum èn minimum.

Als het moment door een analytische functie wordt weergegeven, dan bereikt het moment een wiskundig maximum of minimum als de raaklijn aan de momentenlijn horizontaal loopt, dus als de afgeleide gelijk is aan nul.

Maar let op, het moment kan daar zowel (een absoluut of relatief) maximum als minimum zijn, vergelijk de punten B en C in fig. 1.

Zoals reeds in [255] werd betoogd, gebruiken we van de grafische voorstelling maar een klein gedeelte waarbij de *x*-coördinaten de lengte van de ligger bestrijken. Op de randen van het geldigheidsgebied zal maar zelden een wiskundig maximum optreden, zie fig. 1. Hier heeft men meestal te maken met een zgn. *randmaximum* (punt D) of een *randminimum* (punt A).

Aan de randen van het geldigheidsgebied moet het moment dus gewoon worden uitgerekend.

- Fig. 1 Begrippen maximum en minimum
- A absoluut randminimum
- B absoluut wiskundig maximum
- C relatief wiskundig minimum
- D relatief randmaximum

Controle van de standaardliggers

Bij de vrij opgelegde ligger zien we het gebruikelijke beeld, zie fig. [270-1]. In het midden van de ligger is de dwarskracht gelijk aan nul en het buigend moment bereikt een extreme waarde, in dit geval een positief maximum.

Ter plaatse van de opleggingen ontstaan randextrema, die niet door differentiëren zijn te bepalen. In dit geval zijn de momenten minimaal en is de waarde gelijk aan nul.

Bij de vrij uitkragende ligger komt men echter volkomen in de war als men de bovenstaande regels daar automatisch toepast, zie fig. [270-2]. Aan het linker uiteinde van de ligger is de dwarskracht gelijk aan nul en moet het moment dus een extreme waarde bereiken. In dit geval is het een minimum dat gelijk is aan nul. Dit is een van de weinige gevallen dat een randextremum tegelijk ook een wiskundig extremum is. Aan het rechter uiteinde treedt eveneens een randextremum op dat *niet* door differentiëren is te bepalen en in dit geval een negatief maximum oplevert. De dwarskracht is hier dan ook niet gelijk aan nul, maar juist maximaal.

Vrij opgelegde ligger met overstek

In fig. 2a is een vrij opgelegde ligger met overstek weergegeven. De dwarskrachten- en momentenlijn ten gevolge van een gelijkmatig verdeelde belasting zijn weergegeven in fig. 2b, c. Neem er goede nota van dat alle extreme momenten optreden waar de dwarskrachtenlijn de nullijn snijdt.

De momentenlijn van fig. 2c kan analytisch worden beschreven door twee kwadratische functies; door differentiëren volgen dan de bijbehorende lineaire functies voor de dwarskracht.

Tak I:
$$-\frac{l}{2} < x < 0$$

 $M_x = -\frac{q}{2} (4x^2 + 4k + 4l^2)$ (a)

$$V_x = \frac{dM_x}{dx} = -\frac{q}{8} (8x + 4l)$$
 (b)

Tak II:
$$0 < x < l$$

$$M_{x} = -\frac{q}{8} (4x^{2} - 5lx + l^{2})$$
 (c)

$$V_x = \frac{dM_x}{dx} = -\frac{q}{8} (8x - 5l)$$
 (d)

In tak I blijkt de dwarskracht gelijk aan nul te zijn voor x = -l/2, zie formule (b).

Het moment bereikt daar een wiskundig extremum, en wel een minimum.

In tak II blijkt de dwarskracht gelijk aan nul te zijn voor x = 5/8 l, zie formule (d).

Het moment bereikt daar een wiskundig extremum, en wel een positief maximum. Substitutie van de waarde voor x in formule (c) levert: $M_{\text{max}} = +9/128 q l^2$

Het extreme moment hebben we door differentiëren niet gevonden. Daartoe moeten we de randen van het geldigheidsgebied beschouwen: dit is dus zowel voor tak I als voor tak II de afstand x = 0 met als negatief maximum: $M_{\text{max}} = -1/8 \ ql^2$

Bij de andere rand voor tak II geldt: x = l met als randminimum $M_{\min} = 0$, zie formule (d).

- Fig. 2 Vrij opgelegde ligger met overstek onder een gelijkmatig verdeelde belasting
- a. Schema
- b. Dwarskrachtenlijn
- c. Momentenlijn

13.5.1 LIGGERS UITSLUITEND BELAST DOOR PUNTLASTEN

We beschrijven een bepaalde procedure die op een overzichtelijke manier tot resultaten voert. Een en ander wordt gedemonstreerd aan de hand van het voorbeeld dat in [234-235] is berekend met behulp van de snedemethode.

Bepaling oplegreacties

Herhaling, zie fig. 1a.

Teken de ligger met alle daarop aangrijpende puntlasten en teken de nog onbekende oplegreacties in opwaartse richting. Bepaal op de gebruikelijke wijze de oplegreacties [234]. De uitkomst luidt:

 $R_{\rm A} = 9$ kN, $R_{\rm E} = 23$ kN.

Teken in een tweede schets alle krachten zoals ze op de ligger aangrijpen, zie fig. 1b. Er behoeft geen onderscheid te worden gemaakt tussen 'actiekrachten' en 'reactiekrachten' [236].

Bepaling van de dwarskrachtenlijn Herhaling, zie fig. 1c [234].

Werk van links naar rechts.

- Zet de eerste verticale kracht uit in richting en grootte vanaf de nullijn. De waarde van de dwarskracht blijft constant tot de volgende puntlast wordt bereikt. Dit deel van de dwarskrachtenlijn is dus horizontaal.
- Zet vanaf deze horizontale lijn de tweede puntlast weer uit in richting en grootte, trek een horizontale lijn tot de volgende puntlast.
- Herhaal deze procedure tot uiteindelijk bij de laatste puntlast de nullijn weer wordt bereikt. Ga hier niet automatisch van uit; het is de meest betrouwbare controle op de juistheid van de waarden van de oplegreacties en het verloop van de dwarskrachtenlijn.

- Fig. 1 Eenzijdig uitkragende ligger belast door een aantal puntlasten (herhaling van [234]).
- a. Schema van de ligger
- b. Krachten en oplegreacties
- c. Dwarskrachtenlijn

Bepaling van de momentenlijn

Werk van links naar rechts;

dan levert een positief aandeel van het dwarskrachtenvlak ook een positief aandeel aan het momentenvlak (toename van het moment) en een negatief aandeel van het dwarskrachtenvlak een negatief aandeel aan het momentenvlak (afname van het moment), zie fig. 2.

- Controleer of in het linker uiteinde van de ligger het buigende moment inderdaad gelijk is aan nul (dit is dus niet het geval als daar een uitwendig moment aangrijpt, zoals bij een ligger die aan de linkerzijde is ingeklemd [225]).
 In fig. 1a moet het moment in A echter wèl gelijk zijn aan nul.
- Bepaal de oppervlakken van het dwarskrachtenvlak tussen elk tweetal opeenvolgende puntlasten: A A-B, A B-C, A C-D enz.

(NB: In het vervolg worden deze oppervlakken aangeduid als ΔM)

 De buigende momenten in de opeenvolgende punten zijn dan gelijk aan:

 $M_{\rm A} = 0$

$$M_{\rm B} = 0 + \Delta M_{\rm A-1}$$

 $M_{\rm C} = M_{\rm B} + \Delta M_{\rm B-C}$

 $M_{\rm D} = M_{\rm C} + \Delta M_{\rm C-D}$ enz.

In het onderstaande staatje zijn de opeenvolgende oppervlakken ΔM van het dwarskrachtenvlak vermeld, alsmede het totale buigende moment in het rechteruiteinde van elk beschouwd liggerdeel. Dimensiecontrole:

 $V \text{ in } kN \times \Delta a \text{ in } m = \Delta M \text{ in } kNm$

Ligge	r- $V * \Delta a$	=	ΔM	M
deel				
A	-		-	0
A-B	+9*3	=	+ 27	+ 27
B-C	+1 * 3	=	+ 3	+ 30
C-D	-3 * 3	=	-9	+ 21
D-E	- 15 * 3	=	- 45	-24
E-F	+8 * 3	=	+ 24	0

Fig. 3 Moment volgens de snedemethode uitgezet als het verschil van een aantal oppervlakken

Raster: positieve en negatieve aandelen heffen elkaar op

- Fig. 2 Bepaling van de momenten door integratie van het dwarskrachtenvlak
- a. Dwarskrachtenvlak (herhaling fig. 1c)

b. Momentenvlak

Overeenkomst met de snedemethode

Bij de snedemethode kan het product kracht \times arm evengoed door een oppervlak worden voorgesteld. Uit fig. 3 blijkt dat we hier beginnen met een oppervlak ter grootte $R_A * x$ en daar voor elke nieuwe puntlast een stuk van aftrekken. De uitkomst is precies gelijk aan die van fig. 2, maar niet verder getekend dan tot de afstand x.

13.5.2 LIGGER UITSLUITEND BELAST DOOR EEN GELIJKMATIG VERDEELDE BELASTING

Er worden maar een paar stappen van het te volgen procédé aangegeven, omdat dit soort vraagstukken aanmerkelijk sneller kan worden behandeld met behulp van superpositie [283-284], of met behulp van de snedemethode [249]. We gaan uit van een vrij opgelegde ligger met ongelijke overstekken, zie fig. 1a.

Bij een gelijkmatig verdeeld belaste ligger verloopt de berekening als volgt:

- bepaal de oplegreacties
- teken de dwarskrachtenlijn,
- bepaal het oppervlak van de dwarskrachtenvlak in enkel markante punten,
- zet de hieruit volgende momenten uit en schets de momentenlijn door deze punten.

Oplegreacties

Voor de bepaling van de oplegreacties mag men uitgaan van de resultante van de *totale* belasting op de ligger, zie fig. 1b.

 $F_{\rm V} = 14 * 4 = 56 \ \rm kN$

Deze kracht grijpt aan in het midden van de lengte van de ligger, d.w.z. op 7 m afstand van A en D, dus op 3 m afstand van B en 5 m afstand van C. Uit $\Sigma M_B = 0$ volgt: + 56 * 3 - R_C * 8 = 0 $R_C = 168 / 8 = 21$ kN $R_B = 56 - 21 = 35$ kN

Dwarskrachtenlijn

Voor de bepaling van de dwarskrachtenlijn beschouwen we alleen de werkelijke q-last en de zojuist berekende oplegreacties, zoals die zijn weergegeven in fig. 1b, c.

Tussen A en B neemt de dwarskracht toe van nul in A tot $V_{Bl} = 4 * 4 = 16$ kN direct links van punt B. Deze dwarskracht heeft een negatief teken. In punt B varieert de dwarskracht sprongsgewijs van: $V_{Bl} = -16$ kN tot $V_{Br} = -16 + 35 = +19$ kN. Aangezien de gehele gelijkmatig verdeelde belasting omlaag is gericht, neemt de dwarskracht tussen B en C weer af met in totaal:

4 * 8 = 32 kN, zodat de dwarskracht direct links van C gelijk is aan:

$$V_{\rm Cl} = +19 - 32 = -13$$
 kN.

In C werkt de oplegreactie R_C weer omhoog zodat direct rechts van punt C geldt:

 $V_{\rm Cr} = -13 + 21 = +8$ kN.

De belasting op het overstek is eveneens gelijk aan 4*2 = 8 kN, zodat in punt D de dwarskracht weer gelijk is aan nul.

De dwarskrachtenlijn heeft dus een zaagtandvormig verloop, zie fig. 1c.

Berekening van de extreme momenten

Alvorens de momentenlijn te tekenen, zullen we eerst de grootte en ligging van de extreme momenten bepalen, zie fig. 1d.

In de uiteinden A en D van de ligger treden randminima op die gelijk zijn aan nul.

Ter plaatse van de ondersteuningen B en C gaat de dwarskrachtenlijn sprongsgewijs door nul ten gevolge van de geconcentreerde oplegreacties; hier moeten dus eveneens extrema optreden, vergelijk [267].

 $M_{\rm B} = A_{\rm A-B} = -1/2 * 4 * 16 = -32 \text{ kNm}$ $M_{\rm C} = A_{\rm C-D} = -1/2 * 2 * 8 = -8 \text{ kNm}$

In punt S is de dwarskracht eveneens gelijk aan nul, hier treedt dus een wiskundig maximum op. De afstand B-S is gelijk aan :

$$\frac{19}{19+13} \ 8 \ m = 4,75 \ m$$

Het buigend moment in S is dus gelijk aan:

 $M_{\rm S} = M_{\rm B} + 1/2 * 19 * 4,75 =$

= -32 + 45,125 = +13,1 kNm De berekende extreme momenten zijn weergegeven in fig. 1d.

Tekenen van de momentenlijn

Wie enige ervaring bezit in het tekenen van dergelijke momentenlijnen kan door de berekende punten van fig. 1d een momentenlijn schetsen. Wie deze ervaring niet heeft zal dit een moeilijke opgave vinden.

De lezer mag echter niet verwachten dat een zwierig getrokken lijn door deze 5 punten als de juiste momentenlijn zal worden erkend.

Om met enige nauwkeurigheid de momentenlijn te kunnen schetsen moet men toch wel om de twee meter afstand een punt van de momentenlijn berekenen, zie fig. 1e. Dit is niet moeilijk, maar wel omslachtig.

Voor dit soort gevallen komt men sneller tot het doel als men de gelijkmatig verdeelde belasting tijdelijk vervangt door een aantal puntlasten zoals in [249] is weergegeven.

Wie echter gebruik maakt van een speelmodel – in dit geval een kettinkje dat aan de twee uiteinden op dezelfde hoogte is opgehangen – kan de juiste *vorm* van de momentenlijn zonder meer zichtbaar maken [299-3a2, 3b2].

Voor het bepalen van de numerieke waarden van de momenten moet dan wel gebruik worden gemaakt van poolfiguur en stangenveelhoek [295].

Fig. 1 Vrij opgelegde ligger met twee overstekken onder een gelijkmatig verdeelde belasting

- a. Schema van de ligger
- b. Bepaling oplegreacties
- c. Dwarskrachtenlijn
- d. Grootte van de extreme momenten
- e. Verloop van de momentenlijn

13.6.1 OVERZICHT

Statisch bepaalde liggers, die zijn onderworpen aan willekeurige belastingen, kunnen altijd worden berekend door het toepassen van de snedemethode of door numerieke integratie. De gegevens worden hierbij steeds uitgezet ten opzichte van een horizontale nullijn.

In veel gevallen is het echter overzichtelijker om het probleem in een aantal eenvoudiger basisbelastinggevallen te splitsen en de uitkomsten hiervan grafisch te superponeren. Hierbij is de nullijn niet langer horizontaal, maar de momenten kunnen wel direct in verticale richting worden afgelezen, c.q. opgemeten.

Bij het superponeren beperken we ons in feite vrijwel altijd tot de momentenlijnen ! We zullen een drietal methoden behandelen:

I Splitsen van de belasting

De ligger zelf blijft ongewijzigd, maar de belasting wordt in twee, hoogstens drie eenvoudiger basisgevallen gesplitst, zie fig. 1. Meestal kunnen de momentenlijnen voor deze basisbelastinggevallen zonder meer worden getekend.

II Splitsen van de ligger in moten

Bij liggers met overstekken en bij liggers met dwarsstaven bestaat de mogelijkheid deze constructies als het ware in moten te verdelen. Voor elke moot wordt de krachtswerking afzonderlijk nagegaan onder invloed van de belasting die op de beschouwde moot werkt, zie fig. 2.

Naderhand worden de moten weer samengevoegd en wordt ook de interactie van de moten op elkaar in rekening gebracht. De methode wordt vooral toegepast bij statisch onbepaalde liggers.

III Verplaatsen van de opleggingen

De bestaande opleggingen van de ligger worden vervangen door andere, die ons voor de berekening beter uitkomen. Achteraf worden deze opleggingen weer geëlimineerd en worden de oorspronkelijke opleggingen opnieuw ingevoerd, zie fig. 3.

Fig. 1 Methode I:

Splitsen van de belasting

Verplaatsen van de opleggingen

13.6.2 SUPERPOSITIE BIJ MOMENTEN VAN GELIJK TEKEN

Het beginsel van de methode wordt besproken aan de hand van een ligger die is belast door twee puntlasten, zie fig. 4. Als de oplegreacties van deze ligger zijn berekend, is het momentenvlak eigenlijk al direct te tekenen, zie fig. 4e. $M_{\rm B} = + R_{\rm A} * a_1 = 3 * 2 = 6$ kNm $M_{\rm C} = + R_{\rm D} * a_2 = 3 * 3 = 9$ kNm

Om het beginsel van superpositie te demonstreren laten we eerst de puntlast F_1 alléén op de ligger aangrijpen. Het maximum moment onder de puntlast is hierbij gelijk aan, zie fig. 4b:

$$M_1 = \frac{a_1 * b_1}{l} F_1 = \frac{2 * 6}{8} 2 = 3$$
 kNm

Vervolgens beschouwen we het momentenverloop in de ligger als hierop de puntlast F_2 alléén aangrijpt. Het maximum moment onder de puntlast is dan gelijk aan, zie fig. 4c:

$$M_2 = \frac{a_2 * b_2}{l} F_2 = \frac{5 * 3}{8} 4 = 7.5 \text{ kNm}$$

Om beide momentenvlakken grafisch te kunnen optellen, wordt het momentenvlak voor F_1 gespiegeld om de nullijn en vervolgens op de momentennullijn voor F_2 geplaatst, zie fig. 4d.

De verticale afstand tussen beide geknikte momentenlijnen geeft dan het moment aan ten gevolge van F_1 en F_2 tezamen.

Wil men het momentvlak weer ten opzichte van een horizontale nullijn uitzetten, dan moeten de momenten in de punten B en C nog even worden opgemeten of berekend, zie fig. 4d, e.

Fig. 4 Bepaling van de momentenlijn door superpositie

- a. Belastingschema van de ligger
- b. Ligger alleen belast door F_1
- c. Ligger alleen belast door F_2
- d. Grafisch gesuperponeerde momentenvlakken
- e. Traditionele weergave met horizontale nullijn

13.6.3 SUPERPOSITIE BIJ MOMENTEN VAN ONGELIJK TEKEN

Het superponeren van momentenlijnen wordt voornamelijk toegepast als de 'basismomenten' ongelijk van teken zijn.

In zo'n geval wordt meestal het negatieve momentenvlak om de nullijn gespiegeld.

In fig. 1a is een ligger weergegeven waarop twee tegengesteld gerichte puntlasten aangrijpen. Het negatieve momentenvlak dat wordt veroorzaakt door F_1 is in fig. 1b horizontaal gearceerd en het positieve momentenvlak dat ontstaat door F_2 is in fig. 1c verticaal gearceerd.

Als we nu het negatieve momentenvlak spiegelen om de nullijn dan ontstaat er een gedeelte met dubbele arcering waar de momenten elkaar opheffen, zie fig. 1d. Het is gebruikelijk deze dubbele arcering weg te laten en dit gedeelte van het momentenvlak blank te houden, zie fig. 1e.

De nullijn voor het momentenvlak wordt nu gevormd door de geknikte momentenlijn die behoort bij het negatieve momentenverloop na spiegelen. Dit is gemakkelijk na te gaan door vergelijking met het traditioneel uitgezette momentenvlak in fig. 1f.

- Fig. 1 Superpositie bij momenten van ongelijk teken
- a. Belastingschema van de ligger
- b. Negatief momentenverloop ten gevolge van F_1
- c. Positief momentenverloop ten gevolge van F_2
- d. Superpositie van beide momentenvlakken
- e. Gebruikelijke weergave
- f. Momenten uitgezet ten opzichte van een horizontale nullijn

13.6.4 VOORBEELDEN

In fig. 2 is het voorbeeld van [233-2] herhaald, waarbij de superpositie nu echter niet analytisch is uitgevoerd, maar grafisch. Het laststelsel tussen de opleggingen A en E veroorzaakt een positief momentenverloop, de puntlast op het overstek een negatief momentenverloop.

Als een ligger wordt belast door een gelijkmatig verdeelde belasting en één of meer puntlasten, dan wordt het tekenen van de momentenlijn eveneens een stuk gemakkelijker. De aanwezigheid van knikken in de momentenlijn is dan ook direct duidelijk. In fig. 3 is een voorbeeld uitgewerkt met één puntlast.

In fig. 3a is de puntlast in *neerwaartse* richting aangebracht. In fig. 3b daarentegen is een puntlast van dezelfde grootte in *opwaartse* richting aangebracht. In fig. 3c tenslotte is een puntlast van dubbele grootte in *opwaartse* richting aangebracht. Een overeenkomstig momentenverloop als in fig. 3c is weergegeven, zullen we nog meermalen tegenkomen bij statisch onbepaalde liggers.

Fig. 2 Superpositie van twee belastinggevallen met ongelijk teken (vergelijk [233])

- a. Schema Belastinggeval I: zwarte puntlasten Belastinggeval II: witte puntlast
- b. Superpositie van de gevallen I en II

Fig. 3	Superpositie van een gelijkmatig verde	elde
	belasting en een puntlast	

- a. Puntlast omlaag gericht $F = 3/8 \ ql$ b. Puntlast omhoog gericht $F = 3/8 \ ql$
- c. Puntlast omhoog gericht $F = 6/8 \ ql$

13.6.5 LIGGER MET OVERSTEK GELIJKMATIG VERDEELD BELAST

De methode lijkt zeer eenvoudig, omdat met kleine stapjes wordt gewerkt en steeds weer het beginsel 'actie = reactie' wordt toegepast. Men moet echter behoedzaam te werk gaan om vergissingen te vermijden.

De werkwijze is uiteengezet aan de hand van het schema van fig. 1 (dezelfde ligger als in [273-2]). De scheiding tussen de moten wordt ter plaatse van de ondersteuning(en) aangebracht.

Het overstek AB wordt hierbij ingeklemd beschouwd in ligger B-C, ter plaatse van de ondersteuning B, zie fig. 1b. De reactiekrachten die nodig zijn voor het evenwicht van het liggerdeel A-B, moeten door het liggerdeel B-C in B worden geleverd. Toepassing van het beginsel: 'actie = reactie', levert dus de (zwarte) 'actiekrachten' zoals ze in fig. 1c op de ligger B-C aangrijpen. De kracht $R_1 = qa = 1/2 ql$ wordt geheel door de oplegging B opgenomen. Het koppel $K_1 = 1/2 q a^2 = 1/8 q l^2$ in punt B maakt evenwicht met het koppel K_2 van de verticale reactiekrachten in de punten B en C: $K_2 = R_2 l \operatorname{zodat} R_2 = K_2 / l = K_1 / l = 1/8 ql$, zie fig. 1c. De vrij opgelegde ligger B-C, belast door de q-last levert als oplegreacties: $R_3 = 1/2 \ ql$, zie fig. 1d.

In fig. 2 zijn de momentenlijnen voor de drie onderdelen onder elkaar weergegeven.

De superpositie van alle momenten-aandelen is weergegeven in fig. 3 op het naastliggende blad. In fig. 3a zijn de negatieve momenten-aandelen weer om de nullijn gespiegeld. Aangezien dit een nogal ongebruikelijk beeld oplevert, kunnen we ook anders te werk gaan, zie fig. 3b. De negatieve momenten-aandelen blijven gewoon boven de nullijn staan en de positieve momentenlijn van fig. 2d wordt uitgezet ten opzichte van de lineair verlopende bovenzijde van de momentenlijn van fig. 2c (gestippeld in fig. 3b aangegeven). We hebben dan weer het gebruikelijke beeld met horizontale nullijn.

Fig. 1 Splitsen van de ligger in moten

a. Schema van de ligger (zie ook fig. [273-2])

- b. Moot A-B ingeklemd beschouwd in B
- c. Interactiekrachten op de vrij opgelegde ligger
- d. q-last op de vrij opgelegde ligger

Fig. 2 Moment-aandelen voor de drie moten volgens fig. 1b, c, d

Methode I en II gecombineerd

We gaan uit van een min of meer overeenkomstige ligger als in [276-1] is besproken, zie fig. 4. Na de behandeling van de ligger met één overstek in de figuren 1 en 2 behoeft deze werkwijze nauwelijks commentaar.

Het blijkt in feite weinig uit te maken of we nu drie afzonderlijke liggerdelen beschouwen volgens methode II of dat we methode I toepassen. Bij methode I kan de belasting op beide overstekken gemakkelijk als één belastinggeval worden beschouwd, zie fig. 4b en de belasting op het middendeel als het tweede belastinggeval, zie fig. 4c.

De momentenlijnen zijn in fig. 4d weer zodanig gesuperponeerd dat een horizontale nullijn ontstaat overeenkomstig de prodedure van fig 3b. Het positieve moment wordt er als het ware 'tussengehangen', zie KW-1[131] waar regels zijn gegeven voor het uitzetten van parabolen.

a. Spiegelen van de negatieve momentenaandelen

b. Momentenlijn traditioneel uitgezet

Fig. 4 Ligger met overstekken onder een *q*-last a. Schema

- Belasting op de overstekken met *M*-lijn
- c. Belasting op het middendeel met *M*-lijn
- d. Superpositie (horizontale nullijn)

b.

13.6.6 VERVANGING DOOR EEN BASIS-LIGGER OP TWEE STEUNPUNTEN

Wie voldoende ervaring heeft verkregen in het superponeren kan nog een stap verder gaan en de oplegreacties verplaatsen. Hierdoor kunnen liggers met overstekken snel worden berekend. De methode is uiteengezet aan de hand van een vrij opgelegde ligger met twee overstekken onder gelijkmatig verdeelde belasting.

Belastinggeval I, zie fig. 1a.

Als eerste verwijderen we de echte ondersteuningen en vervangen deze door een rol en een scharnier aan de ligger-uiteinden; zie fig. 1b. Bij dit *belastinggeval II* hoort een symmetrisch parabolisch momentenverloop met als extreme waarde: $M_{\text{max}} = 1/8 qL^2$.

Om de oplegreacties in de uiteinden weer te kunnen elimineren, beschouwen we de oorspronkelijke onbelaste ligger waarop we in de punten A en D neerwaarts gerichte krachten aanbrengen ter grootte R = 1/2 qL: belastinggeval III, zie fig. 1c. De bijbehorende momentenlijn is direct te tekenen omdat alle momenten lineair verlopen en de momenten in de punten B en C direct aan te geven zijn zonder de oplegreacties zelfs maar behoeven te berekenen:

 $M_{\rm B} = 1/2 \ qL * l_1$ $M_{\rm C} = 1/2 \ qL * l_3$

Zowel belastinggeval II als belastinggeval III is onderling in evenwicht, gesuperponeerd vormen ze weer belastinggeval I: (I = II + III). Bij dit superponeren worden de negatieve momenten volgens de regels van [283-3a] om de nullijn gespiegeld, zie fig. 1d. De lijnen A-E en D-F van de negatieve momentenlijn raken in A, resp. D aan de parabool. Beide lijnen snijden elkaar in punt G, waarbij de afstand M-G gelijk is aan: $2 \times$ het maximale moment (MG = $1/4 qL^2$), [244-1]. De snijpunten van de lijnen A-G en D-G met de verticalen door resp. B en C bepalen dus de derde tak E-F van de momentenlijn.

Fig. 1 Ligger met overstekken onder gelijkmatig verdeelde belasting, overeenkomstig [277-1]

b. Belastinggeval II: Verplaatsing van de opleggingen

1

a. Schema belastinggeval I

13.6.7 BESCHOUWING ALS AFZONDERLIJKE LIGGERDELEN

Methode II en III gecombineerd

Bij de methode van [284] moet een parabool met een vrij grote pijl worden getekend, om na superpositie de grootte van de momenten nog redelijk te kunnen aflezen. Dit wordt veel gemakkelijker als men de de drie liggerdelen afzonderlijk beschouwt, zoals we eigenlijk al in [282] hebben gedaan. In dit geval behoeven de belastingen op deze delen ook niet gelijk te zijn.

Uitgangspunt is de ligger volgens fig. 2a. We vervangen deze door drie vrij opgelegde liggers, elk met hun eigen parabolisch momentenverloop, zie fig. 2b.

Als eerste moeten we dan de reactiekrachten in de vrije uiteinden A en D verwijderen. Daartoe denken we de buitenste liggers in B, resp. C ingeklemd, zie fig. 2c.

Superpositie van de omlaaggerichte krachten: $R_A = 0.5 q l_1$ en $R_D = 0.5 q l_3$ in A resp. D levert dan 4 × zo grote inklemmingsmomenten op, als gelden voor de maximale positieve momenten van deze liggerdelen, dus: $K_1 = 4M_1$; $K_3 = 4M_3$ met:

 $M_1 = 1/8 q l_1^2$ en $M_3 = 1/8 q l_3^2$, zie fig. 2d (vergelijk ook [271]).

Voor de middelste ligger zijn dit dus de negatieve randmomenten die we alleen maar behoeven te verbinden om de momentenlijn van de gehele ligger te kennen, zie fig. 2d.

- Fig. 2 Splitsen van de ligger met twee uitkragingen in drie vrij opgelegde liggers
- a. Schema van de ligger
- b. Vervanging door drie vrij opgelegde liggers
- c. Buitenste liggers ingeklemd gedacht in de middelste ligger
- d. Uiteindelijke momentenlijn

De buitenste liggers worden in B en C ingeklemd gedacht, zodat de oplegreacties R_A en R_D kunnen worden geëlimineerd. De hierdoor veroorzaakte reactiekoppels K_1 en K_3 worden daarna als actiekoppels op de ligger BC aangebracht

13.7.1 MAXIMUM EN MINIMUM-MOMENTENLIJNEN

Tot nu toe hebben we gedaan alsof er maar één belasting op een ligger aangrijpt waarmee we hebben te rekenen. De permanente belasting is uiteraard altijd aanwezig (eigen gewicht van de ligger plus de daarop rustende onderdelen), maar de veranderlijke belasting kan al dan niet aanwezig zijn. Hierbij is het lang niet altijd zo dat de aanwezigheid van de veranderlijke belasting ongunstiger is dan de afwezigheid.

We zullen dit nader beschouwen aan de hand van de ligger met overstekken, die is weergegeven in fig. 1.

We gaan uit van een permanente belasting op de ligger ter grootte q en een veranderlijke belasting ter grootte 0,5 q.

Als de veranderlijke belasting alleen op het middendeel aanwezig is – dus niet op de overstekken – zullen de grootste positieve momenten tussen de steunpunten optreden, zoals is weergegeven in fig. 1a.

Als de veranderlijke belasting alleen op de overstekken aanwezig is, zullen de kleinste positieve momenten tussen de steunpunten optreden en de grootste negatieve momenten boven de steunpunten, zie fig. 1b.

Als we de twee momentenlijnen vanuit dezelfde nullijn uitzetten en overal de grootste waarde (in absolute zin) aanhouden, dan hebben we de maximum en de minimum momentenlijn verkregen, zie fig. 1c. Op deze extreme momenten moet de ligger in principe worden gedimensioneerd.

- Fig. 1 Momentenlijnen voor een ligger met overstekken onder permanente belasting en veranderlijke belasting
- a. Veranderlijke belasting alleen op het middendeel
- b. Veranderlijke belasting alleen op de overstekken
- c. Maximum en minimum momentenlijnen

13.7.2 VERPLAATSBARE PUNTLAST

Bij de meeste berekeningen wordt aangenomen dat de maximale belasting maatgevend is voor de dimensionering van liggers. Er wordt bij gebouwen maar weinig gewerkt met de zgn. maximum- en minimum-momentenlijnen volgens [286], waarbij de veranderlijke belasting zo ongunstig mogelijk is aangebracht. Dit ligt uiteraard geheel anders bij pakhuizen en bibliotheken. We zullen alleen het geval beschouwen waarbij een puntlast geen vaste plaats bezit op de ligger maar overal kan aangrijpen, zoals dat voor een zwaar meubelstuk het geval kan zijn.

We beschouwen een vrij opgelegde ligger en geven de afstand van de puntlast tot de linker oplegging aan met x, zie fig. 2a.

Uit formule [228-(3)] volgt dan:

$$M_x = \frac{x(l-x)}{l} F_{\rm V} \tag{25}$$

Dit is de vergelijking van een parabool waarbij het maximale moment onder de puntlast optreedt en het extremum wordt bereikt voor x = l/2.

$$M_{\rm extr} = 1/4 F_{\rm V} l$$
 (26)

Stellen we dit moment gelijk aan dat van een equivalente gelijkmatig verdeelde belasting q, dan volgt:

$$q = 2 F_{\rm V} / l \tag{27}$$

Bij een belasting op het rechter overstek treedt het maximale negatieve moment op boven de rechter ondersteuning, zodat geldt:

$$M_{\text{extr}} = F_{\text{V}} \left(l - x \right) \tag{28}$$

We bepalen nu de grootte van de maximale puntlast $F_{V max}$, die zodanig wordt gekozen dat het maximale moment volgens formule (26) overal juist wordt bereikt. Dit maximale moment treedt dus op onder de puntlast voor x < l,

en ter plaatse van steunpunt B voor x > l. De grootte van $F_{V \max} / F_{V}$ is weergegeven in fig. 3. Dichtbij de steunpunten kunnen dus zeer grote puntlasten worden geplaatst.

M voor *I* < x < *I*+ *a*

Fig. 2 Verplaatsbare puntlast

Plaats van de beweeglijke puntlast: wit Plaats voor het maximale moment: zwart

a. Schema

b. Puntlast tussen de opleggingen

c. Puntlast op het overstek

Fig. 3 De toelaatbare grootte van F_V bij een gegeven moment-capaciteit van de ligger hangt af van de positie van de puntlast op de ligger

13.7.3 OPTIMALISEREN

Onder het optimaliseren van een ligger zullen we verstaan; het zodanig plaatsen van de ondersteuningen of het aanbrengen van overstekken, dat de extreme momenten in de ligger zo klein mogelijk worden. Bij een gegeven overspanning betekent dit meestal dat men probeert de maximale positieve en negatieve momenten zoveel mogelijk aan elkaar gelijk te maken. Dan is namelijk het materiaalverbruik minimaal en zullen ook de doorbuigingen zo klein mogelijk zijn. Als men de parabool zorgvuldig tekent dan is dit schetsenderwijs snel te bepalen.

Voorbeelden:

I De totale lengte van de ligger met één overstek is gegeven, zie fig. 1a. De ondersteuning bij het overstek moet zodanig worden gekozen dat geldt: $M_{pos} = M_{neg}$.

We kiezen de methode volgens [284], waarbij één parabool wordt getekend voor de lengte van de gehele ligger. We kiezen een willekeurige aannemelijke plaats voor de ondersteuning B en meten de maximale positieve en negatieve momenten op. Wijken deze te veel van elkaar af dan verplaatsen we de oplegreactie in de juiste richting en meten opnieuw.

II De totale lengte van een symmetrische ligger met twee overstekken is gegeven. We kunnen de gewenste momentenverdeling nu gemakkelijk op het oog bepalen, zie fig. 1b.

III De lengte van de ligger tussen de ondersteuningen is gegeven. De overstekken moeten van een zodanige lengte worden gekozen dat weer geldt $M_{\text{pos}} = M_{\text{neg}}$.

We kunnen dit direct analytisch aanpakken [285]. We kennen het moment tussen de steunpunten en dat willen we halveren. De lengte van het overstek *a* volgt dan uit, zie fig. 1c:

$$1/2 q a^2 = 1/16 q l^2$$

Dit levert a = 0,35 l

NB; raadpleeg ook [284-285] !

- Fig. 1 Optimaliseren van liggers
- a. Momentenverloop in een ligger met één overstek met een geschatte keuze voor de linker ondersteuning
- b. Optimale lengte voor de overstekken bij een symmetrische ligger
- c. Bepaling van de optimale lengte van de overstekken bij een gegeven afstand van de steunpunten

6.8.1 DOORGAANDE LIGGERS MET SCHARNIEREN; GELIJKMATIG VERDEELDE BELASTING

Als men bij een doorgaande ligger onder een constante gelijkmatig verdeelde belasting en met gelijke velden steeds om het andere veld twee symmetrisch gelegen scharnieren aanbrengt, blijkt het momentenverloop in alle velden precies hetzelfde te zijn, zie fig. 2.

Dit is het beste in te zien door het dwarskrachtenverloop te beschouwen, uitgaande van een 'tussengehangen' liggertje, zie fig. 2b.

Dit dwarskrachtenverloop is volkomen onafhankelijk van de ligging van de scharnieren, hetzelfde geldt voor de aanliggende velden waar geen scharnieren in voorkomen. Het momentenverloop per veld moet dus parabolisch zijn met het extreme moment midden tussen de steunpunten waar V = 0, zie fig. 2c. Uiteraard moet het moment ter plaatse van de scharnieren gelijk aan nul zijn, zodat de momentenlijn voor de velden met scharnieren vastligt. Uit evenwichtsoverwegingen moeten de negatieve momenten voor de aanliggende velden gelijk zijn. De plaats van de scharnieren bepaalt dus het momentenverloop in de gehele doorgaande ligger. In de eindvelden van de doorgaande ligger zullen afwijkingen optreden, tenzij men de plaats van een eindsteunpunt verplaatst naar een momentennulpunt, zoals in fig. 2 rechts is aangegeven.

Fig. 3 Enkalon fabriek te Emmen Inhangliggers op portalen met overstekken De plaats van de scharnieren is zodanig gekozen dat een momentenverloop in de regels ontstaat als bij een doorgaande ligger onder gelijkmatig verdeelde belasting volgens fig. [291-3]. Uit symmetrie-overwegingen blijft de ligger boven de ondersteuningen horizontaal, de kolommen behoeven dus niet te verdraaiien en zullen dus ook geen moment opnemen.

13.8.2 INVLOED VAN DE PLAATS VAN DE SCHARNIEREN

Voor een viertal gevallen is de invloed van de plaats van het scharnier nagegaan. Per figuur is achtereenvolgens weergegeven:

- a. het schema
- b. de momentenlijn
- c. het doorbuigingsverloop

Bij de modellen voor de doorbuiging zijn alle liggertjes wat langer dan strikt noodzakelijk is. Deze overstekende liggerdelen zijn onbelast; ze blijven dus recht en beïnvloeden de krachtswerking niet. Eventuele knikken ter plaatse van de scharnieren worden hierdoor wel beter zichtbaar.

Geval I

We kiezen de scharnieren in de liggers precies boven de opleggingen. We hebben dan allemaal losse liggertjes naast elkaar met elk een moment van $1/8 q l^2$. Momenten en doorbuigingen zijn maximaal, zie fig. 1b, c.

Geval II

We zorgen ervoor dat geldt: $M_{\text{pos}} = M_{\text{neg}} = 1/16 q l^2$ Grafisch is de plaats van de scharnieren direct aan te geven. Analytisch geldt: $M_{\text{pos}} = 1/8 q b^2 = 1/16 q l^2$ Hieruit volgt: $b = 1/2 l \sqrt{2} = 0,71 l$. De momentenverdeling is optimaal, de doorbui-

gingen zijn aanzienlijk verminderd, maar ter plaatse van de scharnieren vertoont de doorbuigingslijn lichte knikken, zie fig. 2c.

Geval III

Door de afstand b tussen de scharnieren te verkleinen, nemen de positieve momenten af en nemen de negatieve momenten toe. De knikken in de doorbuigingslijnen verdwijnen als geldt:

 $M_{\text{pos}} = 1/24 \ q \ l^2$ (b = 1/3 l $\sqrt{3} = 0.58 \ l$) $M_{\text{neg}} = 1/12 \ q \ l^2$

Men heeft dan hetzelfde momentenverloop verkregen als in een doorgaande ligger zonder scharnieren, zie fig. 3. De berekening van laatstgenoemde ligger wordt behandeld in KW-5.

Geval IV

We laten de afstand b tot nul naderen, zodat het scharnier in het midden van de overspanning ligt. We hebben dan uitkragende liggers met maximale negatieve momenten boven de steunpunten. De doorbuigingslijn vertoont om het andere veld grote knikken. Let op het verschil tussen de momentenlijn en de doorbuigingslijn, zie fig. 4. Men verkrijgt hetzelfde momentenverloop maar een wat afwijkend doorbuigingsverloop als de scharnieren in het midden van elk veld worden aangebracht, zie fig. 4c2. Het geheel wordt dan wat 'wiebelig' en er moet minstens één ligger aanwezig zijn zonder scharnier in het midden om de zaak stabiel te maken. Bij bezwijken van deze ligger treedt dan wel 'progressive collapse' op.

14 GRAFISCHE METHODE

Bepaling van momentenlijnen met behulp van poolfiguur en stangenveelhoek

14.1 INLEIDING

14.1.1 GRONDSLAG VAN DE METHODE

Bij de behandeling van poolfiguur en stangenveelhoek in KW-1 is reeds aangestipt dat deze constructie een veelheid van toepassingen kent. In hoofdstuk 14 wordt alleen ingegaan op het tekenen van momentenlijnen bij statisch bepaald opgelegde liggers. In 14.2 wordt rechtstreeks een verband gelegd tussen de stangenveelhoek en de vorm van de momentenlijn.

In 14.3 wordt teruggegrepen op de analytische afleiding voor de vorm van de stangenveelhoek in KW-1 [123-125]. Hierdoor kan de overeenkomst met het momentenverloop in een ligger eveneens zeer duidelijk worden aangegeven. In 14.4 tenslotte wordt aangegeven hoe het momentenverloop in een ligger met behulp van een eenvoudig model kan worden gevisualiseerd. Hiervoor blijkt niet meer nodig te zijn dan een touwtje dat tussen twee punten is bevestigd. Een of twee krachten kunnen dan met de hand worden aangebracht; een groter aantal door enkele gewichtjes en een q-last door een kettinkje.

14.2 MEETKUNDIGE AANPAK

14.2.1 MOMENTENLIJN BIJ EEN UITKRAGENDE LIGGER

In fig. 1a is een éénzijdig ingeklemde ligger getekend waarop enkele verticaal omlaaggerichte puntlasten aangrijpen. Van deze puntlasten wordt in een willekeurige snede het buigend moment bepaald, dat is dus het statische moment van alle krachten (en eventuele uitwendige koppels) die zich aan één zijde van de snede bevinden. Ter wille van de overzichtelijkheid is de beschouwde snede ter plaatse van de inklemming gekozen.

In fig. 1b zijn de krachten van links naar rechts gaande onder elkaar uitgezet en is de pool O ter hoogte van het beginpunt van de eerste kracht gekozen. In fig. 1c is de stangenveelhoek op de gebruikelijke wijze getekend (KW-1 [109]); alle stangen zijn echter doorgetrokken tot aan de inklemming. Als we nu de figuur voor de stangenveelhoek vergelijken met de poolfiguur, dan is hierin voor elke kracht een tweetal gelijkvormige driehoeken terug te vinden, die in fig. 1b, c van een gelijke rastering zijn voorzien.

Zo geldt voor de twee licht gerasterde driehoeken die bij kracht F_1 behoren:

$$\frac{f_1}{a_1} = \frac{F_1}{F_H}$$
 zodat $f_1 = \frac{F_1 a_1}{F_H} = \frac{\Delta M_1}{F_H}$ (1a)

Op overeenkomstige wijze geldt voor de tweede driehoek:

$$f_2 = \frac{F_2 a_2}{F_{\rm H}} = \frac{\Delta M_2}{F_{\rm H}}$$
 (1b)

Nu is $F_1 a_1 = \Delta M_1$ gelijk aan het statisch moment van de kracht F_1 ten opzichte van de beschouwde snede S, terwijl $F_2 a_2 = \Delta M_2$ het statisch moment voorstelt van F_2 t.o.v. S.

Aangezien de kracht $F_{\rm H}$ constant is, zijn de afstanden f_1 , f_2 en f_3 dus een maat voor het aandeel dat de krachten F_1 , F_2 en F_3 leveren aan het statisch moment in de snede S.

In feite is de gehele momentenlijn voor de uitkragende ligger in fig. 1c al getekend; in elke doorsnede geldt immers, zie fig. 1d:

$$M_x = F_{\rm H} * f_x \tag{2}$$

Als de afstand tussen de buitenste stangen wordt vermenigvuldigd met $F_{\rm H}$, dan hebben we het buigend moment M_x gevonden. De schaal van het getekende moment hangt af van de schalen waarop de krachten en de lengtematen worden uitgezet.

Schalen

Als in de poolfiguur een lengte van 10 mm overeenkomt met een kracht van n_1 kN, en in de stangenveelhoek een lengte van 10 mm overeenkomt met een lengte van n_2 m in werkelijkheid, dan geldt voor de momentenschaal:

10 mm komt overeen met: $n_1 * n_2 * F_H$ kNm. Momentenschaal = krachtenschaal × lengteschaal × poolafstand

Deze schalen worden als volgt aangegeven:

krachtenschaal: 10 mm $\stackrel{\wedge}{=} n_1$ kN lengteschaal: 10 mm $\stackrel{\wedge}{=} n_2$ m momentenschaal: 10 mm $\stackrel{\wedge}{=} n_1 * n_2 * F_H$ kNm

Fig. 1 Eénzijdig ingeklemde ligger met puntlasten

- a. Schema van de ligger
- b. Poolfiguur
- c. Stangenveelhoek
- d. Momentenlijn

14.2.2 MOMENTENLIJN BIJ EEN VRIJ OPGELEGDE LIGGER

In fig. 1a is een vrij opgelegde ligger weergegeven die is onderworpen aan hetzelfde stelsel puntlasten als in fig. [293-1]. Voor de krachtenschaal en de lengteschaal zijn ronde waarden gekozen, de poolafstand kan dan zodanig worden aangepast, dat de momentenschaal een gemakkelijk hanteerbare waarde krijgt:

Krachten:	10 mm ≙	2	kN
Lengten:	10 mm ≙	1	m
Momenten:	10 mm ≙	2	*1*5 = 10 kNm

In fig. 1b is de poolfiguur weergegeven met de horizontale poolafstand van 50 mm, waarbij de plaats van de pool O in verticale richting vrij te kiezen is. De bijbehorende stangenveelhoek is weergegeven in fig. 1c; hij is getekend op dezelfde manier als bij een ingeklemde ligger (vergelijk fig. [292-1]), dus zonder rekening te houden met de oplegreactie in punt A. Ter wille van het inzicht zijn alle stangen weer doorgetrokken tot de werklijn van R_B. We kunnen nu de zogenaamde sluitlijn s5 tekenen; de verbindingslijn tussen de punten P en Q in de stangenveelhoek, zie fig. 1c. Hierbij geldt voor punt P: snijpunt van de eerste stang s₁ met de werklijn van R_{AV} en voor punt Q: snijpunt van de laatste stang s4 met de werklijn van $R_{\rm BV}$. De richting van de sluitlijn wordt overgenomen in de poolfiguur en levert daar punt 5. Tussen de stangen s_5 en s_1 wordt dan een opwaartse kracht overgebracht ter grootte: $R_{AV} = 5-1$. Het gerasterde gebied tussen de stangen s_5 en s_1 geeft dan het (positieve) momentenverloop weer ten gevolge van R_{AV} .

Het licht gerasterde momentenvlak geeft dan exact het momentenverloop weer in de vrij opgelegde ligger. Het is gelijk aan het verschil tussen het donker gerasterde negatieve momentenvlak (t.g.v. F_1 , F_2 en F_3) en het driehoekig verlopende positieve momentenvlak t.g.v. R_{AV} . Ter plaatse van A en B zijn de buigende momenten in de ligger gelijk aan nul; de grootte van de oplegreactie in punt B is gelijk aan: $R_{BV} = 4-5$.

Om een momentenlijn te verkrijgen met een horizontale nullijn, kan de pool van fig. 1b zodanig in verticale richting omlaag worden verschoven dat de sluitlijn horizontaal loopt, zie fig. 1d.

14.2.3 INVLOED VAN DE PLAATS VAN DE OPLEGGINGEN

Door het tekenen van de stangenveelhoek bij de uitwendige krachten die op de ligger aangrijpen, wordt in principe de resultante van deze krachten bepaald. Door het tekenen van de sluitlijn wordt dan de grootte van de oplegreacties bepaald. Min of meer als toegift is de momentenlijn dan tegelijkertijd ook al getekend.

Hierdoor leent deze grafische werkwijze zich uitstekend tot het optimaliseren van liggers; dat wil zeggen, het zodanig aanbrengen van de opleggingen, dat zo klein mogelijke momenten in de ligger zullen optreden [288].

In fig. 2a is op de gebruikelijke wijze het momentenverloop getekend van een aan de uiteinden vrij opgelegde ligger. Als men besluit de opleggingen iets dichter bij elkaar te plaatsen, of juist iets verder uit elkaar te plaatsen, dan kan bij dezelfde stangenveelhoek direct een nieuwe sluitlijn worden getrokken. De consequenties voor het momentenverloop zijn dan duidelijk.

In fig. 2b is de rechter oplegging naar binnen verplaatst, zodat rechts een overstek ontstaat. De sluitlijn s_0 wordt dan gevormd door de lijn PQ, waarbij geldt:

P = snijpunt van de 1e stang s₁ met de werklijn van R_{AV} Q = snijpunt van de 6e stang s₆ met de werklijn van R_{BV} . De richting van de sluitlijn PQ wordt overgenomen in de poolfiguur, waardoor de oplegreacties 6-7 in B en 7-1 in A vastliggen. Opvallend is de drastische verkleining van de momenten, zowel door het verkleinen van de overspanning, als door het aanbrengen van een overstek.

In fig. 2c is de ligger ingeklemd in een kolom. De delen links en rechts van de kolom werken elk als een eenzijdig ingeklemde ligger. Deze inklemmingsmomenten zijn niet even groot, zodat de kolom een constant buigend moment moet overbrengen, ter grootte van de zgn. *momentensprong*. De numerieke waarde hiervan kan worden opgemeten uit fig. 2c3.

Er is echter nog een controle. De kracht 6-1 die evenwicht maakt met alle belastingen, heeft een werklijn die gaat door punt R; het snijpunt van de uiterste stangen s_1 en s_6 KW-1 [107]. De werklijn van deze kracht heeft een afstand e tot de kolomas, zodat in de kolom een buigend moment moet werken ter grootte: $M = \sum F * e$.

- Fig. 2. Invloed van de plaats van de opleggingen op het momentenverloop
- a. Opleggingen aan de uiteinden
- b. Overstek rechts
- c. Inklemming in een kolom
- 1 = schema; 2 = poolfiguur; 3 = momentenlijn

14.3.1 VERGELIJKING GEDRAG VAN LIGGERS EN KOORDEN

In KW-1 [123] is reeds ingegaan op de overeenkomsten en verschillen in het gedrag van koorden en liggers, die op een overeenkomstige wijze worden belast, zie fig. 1. In beide gevallen hebben we te maken met een constructie die een aantal puntlasten naar de opleggingen overbrengt. Bij een koord moeten de opleggingen zowel horizontale als verticale reacties kunnen opnemen. Het koord zakt onderuit en neemt een vorm aan die overeenkomt met de momentenlijn van een overeenkomstig belaste ligger. Hierdoor is in iedere snede van het koord het statisch moment van de verticale actie- en reactiekrachten – links of rechts van de beschouwde snede - gelijk en tegengesteld aan het statisch moment van de horizontale reactiekracht.

Bij een *ligger* ontbreekt de mogelijkheid tot grote verticale verplaatsingen; horizontale reactiekrachten kunnen daardoor niet tot ontwikkeling komen, zodat ze ook niet door de opleggingen behoeven te worden geleverd. In elke snede van de ligger moet het statisch moment van de horizontale actie- en reactiekrachten – links of rechts van de beschouwde snede – dan ook worden opgenomen door de ligger zelf. We noemen dit statisch moment van alle krachten op het beschouwde liggerdeel het *buigend moment*.

De hellingen van het koord zijn recht evenredig met de de grootte van de krachten die naar de opleggingen worden overgebracht. Bij de ligger worden deze krachten als dwarskrachten aangeduid. In punten waar de dwarskracht in een ligger gelijk is aan nul, zal het overeenkomstig belaste koord dus horizontaal moeten staan, vergelijk ook [269-1].

Fig. 1 Relatie tussen de vorm van een koord en de momenten- en dwarskrachtenlijn van een ligger
a. koord b. ligger
Ordinaten koord → ordinaten momentenlijn

Hellingen koord \rightarrow ordinaten dwarskrachtenlijn

14.4.1 ALGEMEEN

In de tijd dat nog geen computers ter beschikking stonden, zijn vele problemen die te moeilijk waren voor een analytische berekening, opgelost met behulp van modelonderzoek. Modelonderzoek – vooral ter vervanging van een berekening - is sterk teruggelopen. Maar toepassing van eenvoudige 'speelmodellen' om inzicht te verkrijgen in de verschijnselen, heeft nog steeds een grote educatieve waarde. Als we dan een belast koord gebruiken om de momentenlijn te bepalen, gaat het er niet om de preciese numerieke waarden van het moment uit de vorm van het koord af te leiden, maar vooral om te zien of de berekende of getekende momentenlijn in essentie juist of onjuist is; òf om voorafgaande aan een berekening, te zien, wat we globaal mogen verwachten.

14.4.2 VRIJ OPGELEGDE LIGGER Belasting door puntlasten

Als de belasting op een ligger uitsluitend bestaat uit neerwaarts gerichte puntlasten, dan is de oplossing al heel eenvoudig, zie fig. 3a. Een draadje of touwtje met enkele gewichtjes (moeren bijv.) is dan voldoende om de vorm van de momentenlijn na te bootsen. Als bij de belasting ook opwaarts gerichte puntlasten voorkomen, dan kan zo'n belasting via een katrol of een evenaar-constructie worden aangebracht, zie fig. 3b1. Ter plaatse van zo'n opwaartse kracht ontstaat dan een 'negatieve' knik, vergeleken met de andere 'positieve' knikken, zie fig. 3b2.

Symmetrisch en keersymmetrisch belaste liggers, leveren dan ook geen enkel probleem meer op, zie fig. 3c, d. De bijbehorende dwarskrachten- en momentenlijnen zijn op blad [296] weergegeven in fig. 2. Hieruit blijkt:

Symmetrische ligger:

Momentenverloop symmetrisch

- Dwarskrachtenverloop keersymmetrisch
- Keersymmetrische ligger:
- Momentenverloop keersymmetrisch
- Dwarskrachtenverloop symmetrisch.

- Fig. 3 Speelmodellen voor een vrij opgelegde ligger gevisualiseerd door een koord
- a. Alleen neerwaarts gerichte puntlasten
- b1 Neerwaarts gerichte puntlasten plus één opwaarts gerichte puntlast
- b2 Aanduiding positieve knikken (α , γ)-en negatieve knikken (β)
- c. Symmetrisch belaste ligger (vierpunts-buigproef) zie ook fig. 2a
- d. Keersymmetrisch belaste ligger (vierpunts-afschuifproef) zie ook fig. 2b

14.4.3 VRIJ OPGELEGDE LIGGER Gelijkmatig verdeelde belasting

Als over een deel van de ligger een gelijkmatig verdeelde belasting aangrijpt, kan die worden vervangen door een aantal puntlasten op regelmatige afstand, zie fig. 1a. Een andere mogelijkheid is, om het touwtje of draadje over dat deel te vervangen door een kettinkje, zie fig. 1b. Uit het proefje blijkt duidelijk, dat bij de overgang van de gelijkmatig verdeelde belasting naar het onbelaste liggergedeelte, geen knik in het momentenverloop kan optreden. Als de ligger over de gehele lengte is belast, dan kan met een kettinkje worden volstaan, zoals is weergegeven in fig. 1c. Als er tegelijkertijd ook verticaal werkende puntlasten op de ligger aangrijpen, dan moeten de gewichtjes voor de puntlasten en de q-last per eenheid van lengte in de juiste verhouding tot elkaar staan, zie fig. 1d.

1

14.4.4 EENZIJDIG INGEKLEMDE LIGGER EN LIGGER MET OVERSTEKKEN

Ingeklemde ligger

Bij een éénzijdig ingeklemde ligger geldt voor het vrije uiteinde: V = 0 en M = 0; fig. 2a1, b1. Uit V = 0 volgt dat het koord daar horizontaal moet staan. Het enige dat we dus behoeven te doen, is het koord – aan de zijde van de inklemming van de ligger – zover omhoog te halen dat het koord bij het onbelaste liggerdeel horizontaal staat, zoals is weergegeven in fig. 2a2, b2.

- Fig. 1 Gelijkmatig verdeelde belasting
- a. Vervanging door een aantal puntlasten
- b. Plaatselijk een kettinkje aanbrengen
- c. Kettinkje over de gehele lengte bij volbelasting
- d. Puntlast even groot als de resultante van de gelijkmatig verdeelde belasting [250-1]

In fig. 2 wordt de nullijn in beide gevallen gevormd door een horizontaal gespannen koord. De momentenlijn in fig. 2a2 wordt dan gevormd door een tweede koord waarop de puntlasten aangrijpen. Het onbelaste deel van het koord ligt op dezelfde hoogte als de nullijn en is op de foto hiervan nauwelijks te onderscheiden. De momentenlijn bij fig. 2b2 bestaat uit een kettinkje met daaraan een stuk koord dat aan de rechterzijde weer op dezelfde hoogte is bevestigd als het koord voor de nullijn.

Ligger met overstekken

Bij een ligger met overstekken kunnen we beide overstekken beschouwen als ingeklemd in de eigenlijke ligger, zie fig. 3a. Ter plaatse van de steunpunten wordt het koord, c.q. het kettinkje, dan zover opgetrokken dat de delen van het koord, die met de onbelaste liggerdelen overeenkomen, weer horizontaal staan, zie fig. 3b. Vergelijken we fig. 3b met fig. 3a, dan zien we ook zonder enige berekening in een oogwenk de sterke variatie in het momentenverloop als de opleggingen worden verplaatst. De touwtjes waaraan het kettinkje wordt opgetrokken moeten hierbij wel verticaal hangen, anders klopt er niets van!

Voor het optimaliseren van het momentenverloop is het uiteraard voor de berekening een stuk gemakkelijker om de plaats van de opleggingen te ontlenen aan het proefje en daarna op de gebruikelijke wijze de momenten te berekenen, dan langs analytische weg de optimale stand van de opleggingen te bepalen.

Let op, statisch *onbepaalde liggers* – zoals een doorgaande ligger over drie steunpunten – kunnen met dit systeem niet worden gecontroleerd; tenzij men uit anderen hoofde al op de hoogte zou zijn van de oplegreactieverdeling, zie fig. 3c.

Alleen dàn kunnen we ter plaatse van het middensteunpunt door middel van een hefboompje de correcte reactiekracht aanbrengen; de krachten bij de buitenste opleggingen stellen zich dan weer automatisch in.

- Fig. 3 Vrij opgelegde liggers met overstekken, belast door een gelijkmatig verdeelde belasting
- al Schema a2. Vorm van de bijbehorende momentenlijn
- b1 Schema met verplaatste opleggingen
- b2. Vorm van de bijbehorende momentenlijn
- c. Statisch onbepaalde liggers kunnen zo niet worden onderzocht !

INLEIDING

De trefwoordenlijst van April 1999 heeft betrekking op de volgende delen:

- 0 BASISKENNIS
- 2 LIGGERS
- 3 VAKWERKEN, STANDZEKERHEID
- 4 SPANNINGEN
- 5 VERVORMINGEN

Deel 1 is in bewerking en (nog) niet verkrijgbaar in de bouwshop. Het omvat enkele elementaire mechanica-modellen, waarbij de hoofdkrachtsafdracht voornamelijk plaats vindt via normaalkrachten. Hierbij zijn twee hoofdbestanddelen te onderscheiden:

- 1 De grafische constructie met poolfiguur en stangenveelhoek, voor koorden, bogen, koepels en gewelven .
- 2 De Stapelsteen-mechanica voor metselwerk

De combinatie van 1 en 2 geeft een goed inzicht in de hoofdkrachtswerking van historische gemetselde of gestapelde gebouwen zoals kathedralen of tempels uit de oudheid. Met behulp van 1 is eveneens inzicht te verkrijgen in enkele moderne constructievormen, zoals kabelconstructies.

In de andere dictaten wordt incidenteel verwezen naar deel 1. Studenten kunnen bij de leerstoel Krachtswerking díe onderdelen verkrijgen waarvan ze gebruik willen of moeten maken.

Hetzelfde geldt voor de onderstaande delen, waarvan de opzet momenteel wordt gewijzigd :

- 6 Portalen en Raamwerken
- 7 Spanningsleer

Zoals vermeld heeft de voorliggende trefwoordenlijst uitsluitend betrekking op de volgende delen: 0 - 2 - 3 - 4 - 5.

Ze wordt in principe aan alle nieuwe drukken van de dictaten toegevoegd en zonodig aangevuld en uitgebreid.

TOELICHTING TREFWOORDENLIJST

Het eerste cijfer van elke pagina waarnaar wordt verwezen geeft het betreffende deel aan. In deel 5 liggen de pagina's dan tussen 500 en 599. Een cursieve nummering – bijv. 504 – heeft betrekking op het voorwerk aan het begin van deel 5, terwijl een notatie als A-504 betrekking heeft op de appendix aan het eind van dat deel. Voor een goed overzicht zijn de bladzijde-nummers die op hetzelfde deel betrekking hebben, zoveel mogelijk onder elkaar geplaatst.

De hoofdtrefwoorden beginnen steeds met een hoofdletter en zijn alfabetisch geordend.

Bij diverse hoofdtrefwoorden is gebruik gemaakt van een onderverdeling, beginnend met een streepje en dan de omschrijving beginnend met een kleine letter in een kleiner lettertype, bijv.

Actie = Reactie

- voor uitwendige krachten
- voor inwendige krachten

Bij deze onderverdeling is meestal een systematische opbouw gebruikt en geen alfabetische. Kijk dus even wat er staat.

Bij sommige uitgebreide opsommingen is het hoofdtrefwoord weergegeven in hoofdletters, de primaire onderverdeling met 1, 2, 3 De secundaire onderverdeling wordt dan aangegeven met één streepje en de tertiare met twee streepjes.

BEREKENING LIGGERS

- 1 Vrij opgelegde ligger
- belasting één puntlast
- belasting meer puntlasten
- idem grafisch

Als hetzelfde hoofdtrefwoord meer dan eens wordt genoemd, omdat er in de onderverdeling andere aspecten worden behandeld, dan wordt dat met romeinse cijfers aangegeven

T-02

Actie = Reactie – voor uitwendige krachten – voor snedekrachten Assenkruis (rechtsdraaiend)	031 2 2 0 <i>009</i>	13 21		Cremona (Vakwerken) – werkwijze algemeen – uitgewerkt voorbeeld	340 340 342	-341 -345
 bij liggers 	2	16	428	De St. Venant		486
Basis-belastinggevallen BASIS-LIGGERS Diagrammen voor <i>M</i> , <i>V</i> – Liggers op twee steunpun – Eénzijdig ingeklemde ligg	2, φ , w ten, q -last gers, resp.	44	508-511 512-519 512-513	 Deuvels Diagrammen snedekrachten (1 1 Liggers belasting door puntlasten - N-V-M bij pendelstijlen belasting door <i>q</i>-last 	V - M) 228-235 213 238-240	485
belast door K, F, q (verge	et-me-nie	tjes)	514-515	– belasting lineair variërend	241	
- Liggers op twee steunpun	ten,			- belasting: puntlasten + q -last	242-253	
belast door randmomenter	1		518-519	Differentiaal-rekening		
Beddingsmodulus Belasting I	056			grondbeginselendifferentiëren	255 256-257	
- permanent (eigen gewicht) 074-07	5		Dimensies (omschrijving) 011		
 veranderlijk (personen, 				Dimensioneren:		
meubilair, sneeuw)	076-07	7		 op normaalkracht (voorbeelder 	n)	415
– wind	078-07	9		 op buiging (voorbeeld) 		427
 bijzondere belastingen 	080			Doorbuiging liggers		509
 opgelegde vervormingen 	082			Doorgaande ligger		530-534
– invloed temperatuur	097			[zie ook: LIGGER]		
Belasting II (nomenclatuu	ır)			 principe van de berekening 		530-531
 bezwijk- belasting 				- berekening bij een q -last		532-533
= breukbelasting	071			– – gelijke overspanningen		534-535
- rekenwaarde v.d. belasting	g 071			– – invloed randvelden		536-539
 representatieve belasting 	0.74			 – afwisselend belaste velden 		537
= extreme belasting	076			– – vuistregel doorgaande ligge	r	539
 momentane belasting 	0			DOORSNEDE-GROOTHEDH	EN	
= gemiddelde belasting	076			1 Analytische afleiding algem	ieen:	
Belasting-atdracht (system	atiek) 2	13		 oppervlakte A 		428
- afvoer windkrachten via st	ijve schij	ven 368-3	570	- lineair oppervlakte-moment S		429
– – voorbeeld analytisch		371		 kwadratisch oppervlakte-momente 	ent I:	
– – voorbeeld numeriek		372		 – berekening via integraalreke 	ning	430-436
- atvoer verticale en horizon	tale krach	ten 373		 – berekening via het spanning 	sverloop	443-447
Belasting op liggers				 oppervlakte-product I 		430
- symmetrisch en keersymm	etrisch	376-3	107	– weerstandsmoment W		421; 427
Bollenmodel	0.1	10	405	– zwaartepunt		429
Buigend moment	21	lð	100	2 Gebruik van tabellen		442
Buigspanning			426	Driehoekige vakwerken	352	
Bulgsterkte (nout)			427	DRIE-SCHARNIERSPANT	387	540
Buigstijmeid			425	- definitie	203	
Centrische druk of trek		- 1	416	 vergenjking met twee-scharnies bepaling snedekrachten: 	rspant 380	
[<i>zie ook</i> : SPAINNINGSVE	RDELING	ا د	4.4.1	N en V	388	
Cirkei van Ivionr			441	M bij een regel onder een he	lling 389	202
blok on literation 1	001 001	-		M bij een verticale q-last	390-	393
- blok- en hjnvormig, vlak	084-083)		M bij een asymmetrische	q-last 394-	395
omschrijving vokashigd	017			M Dij een horizontale puntlas	st 397	200
Contractie-coëfficiënt	017			Druk; drukkracht	ngen 398- 309	399 416-417
– definitie	095-096	5	414			
 numerieke waarden 	096					

T-03

Drukliin	396	468-471		Hoofdassen		4	25	
- definitie	570	468		Horizontale belasting		т	23	
 toepassing bij driescharpier 	spanten 395-	396		- on nortalen		383		
- toepassing bij kolommen	spunten eve	468-471		- on een driescharnierspant		397		
Drukpunt		469	+-		.		-	
Dubbele buiging		460-463		Incasseringsvermogen 081				
Dwarscontractie	095	414: 422		Ingeklemde ligger	209			
Dwarscontractie-coëfficiën	it =			Inklemming		356		
= contractie-coëfficiënt	095	414		- verend	207	356-357		
- numerieke waarden	096			- volledig	207-209	356-357		
Dwarskracht	218			 invloed ligging onlegreactic 	es 208			
Dwarskrachtcentrum	2 1 0	498		Integraal-rekening:	200			
Dwarskrachtenlijn	228-235			- grondbeginselen	258-259			
<i>zie ook</i> : Diagrammen sne	dekrachten (Ligge	rs)]		 bepaalde integraal 	260			
				– integreren				
Eenheden (omschrijving)	011			(analytisch en grafisch)	261			
Eenziidig ingeklemde ligge	er 207: 270	5	514	Inwendige hefboomsarm		4	20	
Eigen gewicht	075							
Elasticiteitsmodulus	094: 096	414		Kantelen 052				
 – numerieke waarden 	096			Keersymmetrie [<i>zie</i> : Symm	etriel			
Evenwicht	0,0			KERN	louioj			
_ indifferent	037			1 Voor spanningsberekeni	ng			
- labiel	037.042-043			 bij rechthoekige doorsne 	ede	4	75-4	76
- stabiel	037:042-043:052	2-053		 – volledig meewerkende d 	Isn	4	76	
$-$ overgang stabiel \rightarrow labiel	066-067	2 000		 – gedeeltelijk meewerkend 	de dsn	4	77	
Evenwichtbeschouwingen	liggers 217			2 Onderdeel constructie		•		
Evenwichtsvoorwaarden	026-029			= Stijve kern		365		
- in het platte vlak	034			KNIK		4	16	582
- in de ruimte	036			– omschrijving		•		582
Excentriciteit		471		 invloed vervormingen 				583
Excentrisch belaste doorsn	ede	470		 berekening volgens Euler 			584	1-585
Excentrische druk of trek		417:475	;	 verklaring knikverschijnse 	1			586
<i>zie ook</i> : Buiging plus nor	maalkracht]	,		1 Basis-belastinggevallen	_			
Excentrische dwarskracht]			 ongeschoorde portalen 				590
<i>zie</i> : Wringing plus dwars	kracht]	498		– geschoorde portalen				591
[~~~ P				2 Knik in onderling loodr	echte richt	ingen		594
Flens		485		3 Knik bij buiging + norm	aalkracht	0		596
Fundering	055			 buigbelasting sinusvormig 			597	7-598
– op staal	055			Knikkracht				584
– op palen	055			Kniklengte			585	: 587
- schematisering ondergroud	056-057			 schetsen van kniklijnen 				589
				Knikspanning				592
Gaapvergelijkingen		5	533	 algemene formulering 				595
Gedeelteliik meewerkende	dsn	475		- globale dimensionering (v	oorbeeld)		592	2-593
Geknikte ligger:				- - bij $N + M$ (voorbeeld)	,			599
– L-vorm		5-	542	Kolom		4	66	
– T-vorm		5.	543	Koord		300-301		
- spanningsverdeling in de kr	nik	544-5	545	Koppel 004	Ļ			
Geometrische liggerstijfhe	id	5	549	Krachten-methode				529
Geometrische stiifheidsver	houding	5	541					
Gereduceerd momentenvla	ık	5	573					
Glijdingsmodulus (afleiding	<u>z</u>)	499A						
Gravitatiewet	030							
Grond (eigenschappen)	057							

KRACHT

KRACHT [<i>zie ook</i> : SAMENSTELLEN, Verplaatsen, Ontbinden van D – omschrijving – definitie volgens Newton – actie = reactie – evenwichtmakende kracht – ontbondene van een kracht = component van een kracht – resulterende kracht – tekenafspraken – weergave: – grafisch – – analytisch Krachten op liggers: – actie-krachten (uitwendige k	krachte 000-0 032 031; (010 = 007 010 012 008;0 001 cr.)	n] 01)41 01 207-209; 214		MATERIAAL EIGENSCH 1 constructiemateriaal 2 ideaal materiaal (definiti – contractie-coëfficiënt – elasticiteitsmodulus – uitzettingscoëfficiënt Mechanica (definitie) Meerbeukig portaal Meewerkende doorsnede Membraan-analogie Methode Cross Moment – definitie statisch moment – definitie buigend moment – tekenafspraken MOMENTENLIJN LIGG	HAPPEI 094 e) 095 095- 097 016 004 004 004 033 ER	N 096 096 38: 218	2 477 496	548
 reactiekrachten tekenafspraken verwisselen actie- en reactiek inwendige krachten (spannin Krachtendriehoek Krachtenveelhoek Krachtswerking (omschrijving vakgebied) Kromming Kromtestraal Kwadratisch oppervlaktemoo van een driehoek van een cirkelvormige dsn van een parallelogram van dunwandige profielen 	kr. 007 011 <i>016</i>	214 216 214; 236 209 423 419; 42 425; 42 435 432 436 435 449	504-505 3 8; 448	 [<i>zie ook</i>: LIGGERS] 1 Basis-belastinggevallen: vrij opgelegde ligger met 1 vrij opgelegde ligger met <i>q</i>- uitkragende ligger met <i>q</i>-las 2 Variërende belasting Max. en minimum <i>M</i>-lijnen - <i>q</i>-last - verplaatsbare puntlast 3 Visualisering van de vorr m.b.v. een koord Momentenvlak-methode methode I (vrij opgelegde I methode II (éénzijdig ingek 	puntlast last puntlast st n igger) ilemde lij	244-246 244-247 245 245 286 287 296-299	568 574	527 574 3-572 4-575
L-vormige ligger Labiel evenwicht (LIGGER – definitie – vrij opgelegd (rol + scharnier – vrij opgelegd met overstek – eenzijdig ingeklemd – over meer steunpunten – extra inwendige scharniere – zonder inwendige scharniere – ondersteund door pendelstijke – berekening oplegreacties – instabiele varianten Lijf Lijnvormige elementen: – koorden, liggers, staven Lijnspanningstoestand Lineair oppervlakte-moment Lineair variërende belasting Lineaire uitzettingscoëffic. (042 r) en eren en	202 301-302 206 232; 273 207; 209; 225 210; 212; 289-2 290-291 210 212-213 211 485 300-301 410-411 424, 428 241	542 568 535 291	Neutrale lijn Newton Normaalkracht Normaalkracht + buigend n Normaalspanning Normale doorsnede Nulstaven (vakwerk) ONDERSTEUNINGEN [<i>zie ook</i> : OPLEGGINGEN] 1 Ondersteuningen I – continu – lijnvormig – puntvormig – star – verend 2 Ondersteuningen II – inklemming – pendelstijl – rol – scharnier	032 098 noment 039 039 039 040 040; (338 055-068 207-209 210-211 206-208 206-208	418 417 464 408; 408; -339	426 411

T-05

		1				
ONDERSTEUNINGEN		Raamwerk (omschrijving)	203			
3 Ondersteuning rechthoekig blo	(3D)	 éénbeukig raamwerk = 				
 in één punt (koord) 	040-041	stapeling van portalen				
 in drie punten (star) 	044-046	verticale belasting	381			
 – continu door de ondergrond 		horizontale belasting	383-385			
 – alleen verticale belasting (e.g.) 	059	Randvoorwaarden 091	259; 270			
alleen horizontale belasting (win	d) 060	– invloed op verplaatsingen ligge	er 237			
verticale + horizontale belasting	062-063	Rechthoekige staafwerken	312			
– – gedeeltelijk meewerkend grondv	lak 064-065	Regel (constructiedeel; definit	ie) 202 540			
Ontbinden van krachten		Regel van Steiner	430-433			
1 In het platte vlak:		Rek	414; 423 557			
 inleiding eenvoudige gevallen 	022-023	Rekstijfheid	414 557			
 langs drie gegeven werklijnen 	024-025	Relatie buigend moment - very	vorming			
2 In de ruimte	035	$(M - \kappa)$ diagram	502			
– Ontbondenen (van een kracht)	008	Relatie vervorming en belastin	$(\varphi, w - q)$ 506-507			
OPLEGGINGEN	087	Resultante 008				
1 Ideale opleggingen:		– van twee krachten 010				
rol, scharnier, volledige inklem	ming	Rol, Roloplegging 088				
– ruimteliik	088					
- in het platte vlak	089	SAMENSTELLEN VAN:				
2 Realistische opleggingen		1 Krachten				
– voorbeelden	090	 Twee krachten door één punt: 				
Onlegreacties ligger (berekening)		- - analytische oplossing	008			
- vrij ongelegde ligger	 219	– – krachtendriehoek (grafisch)	007			
 éénziidig ingeklemde ligger 	225	– – parallellogram van krachten	007			
Oppervlakte	478	 – paranenogram van kraenten – Meer krachten door één punt: 	007			
Oppervlakte-moment:	425.439	- - krachtenveelhoek (grafisch)	011			
[<i>zie ook</i> : Doorsnede, grootheden]	425, 457	- Krachten niet door één punt:	011			
Oppervlakte-produkt:	425	inleidende beschouwingen	013			
[rig ook: Doorspade groothoden]	725	medende beschouwingen	015			
Optimaliseren ligger:		analytische opleteing	.)017-019			
door verplaatsen, v.d. onleggingen	288	gransche oplossing	010			
Overgangsmoment	533	- Machiel zijn evenwijdig.	020 021			
Overgangsmoment	555	2 Kracht + koppel	020-021			
Paraboolyormige vakwerken	350	2 Momenten	013			
Parallallogram y kraahtan 007	330	Schernier	033			
Pandalatiil	210	Schampticeren Inleiding				
Permanente belastingen 074	210	Schematiseren von:	008-009			
Polonceouspont 074	215	de constructio	083			
Poolfiguur	202	- de constructie	085			
	273	- constructie-onderderen	004 005			
1 omsehrijving	202 202 540	- materiaai-eigenschappen	094-095			
i omschrijving	202-203 540	- opleggingen	268, 271 272			
- eendeukig, meerdeukig	205 279 290 546 547	Schoren	300, 3/1-3/3			
 globale allaryse 2 Parakaning 	576-360 340-347	Schuifenenning algemeen	JU7 100, 111			
2 Derekenning		Schultspanning algemeen	400,411			
- onder een verticale <i>q</i> -last	546 547		100 105			
vergenjking met doorgaande ng	ger 540-547	- ten gevolge van dwarskracht	400-403			
berekening doorgaande nggers	550 551	- ten gevolge van wringing	40/-494			
- twee-schafflerspant	350. 202	Buigand marrant M	210 · -~ 219			
- onder een nonzontale puntiast	557, 505	– Buigenu moment M	210 218			
- ngger op twee ingekleinde säjlen	332 551 555	- Dwaiskiacht V	210 218			
- voncuig ingekieniu portaal	334-333 555	- INOIMAAIKITACIIL IV	∠10 224 225			
– – argemene formules portaien	222	- Tekenan y diagram M V M	224-223 226 225			
		- 1 cKchich v. diagraffi. IV, V, M	220-233			

5

T-06

S

Sneeuwbelasting	077			Stabiel evenwicht	042				
Soortelijke massa van lucht	0//		401	Stabiliteit	042	070	351		
SPANNING I				Stabiliteit (constructie-eis)	073	070	554		
1 Algemeen			401: 406	- le orde stabiliteit: [zie	· Standz	ekerh	eid]		
– in gassen en vloeistoffen			401	-2e orde stabiliteit; [<i>zie</i> :	Knik l	CKCIII			
 in vaste stoffen 			402-403	Standzekerheid (omschrijv	ing)		354	255	
– in steenachtige materialen			404-407	Stangenveelhoek	ing)	293	554-	555	
2 In een ideaal materiaal				Stapelbouw 3D		295			
– definitie			406	– verschillende wijzen van st	anelen		360 3	261	
– notatie			408-409	- standzekerbeid	apelen		262	262	
- teken (2D)			408	- standzekemen	alamanta	-	264	202	
- teken (3D)			409	opbouw uit vlakka alam	elemente	11	260 /	260	
SPANNING II (naamgevir	1 0)		109	Stapeling van portalen	enten		201	509	
1 Buigspanning =	16)			Statisch benaald boofdoudt			301		520
= lineair verlopende normaa	Isnannii	nσ	426.465	Statisch benaalde construct	io				330
- formules	opainin	16	426-427	- omschrijving	.10	204			500
2 Normaalspanning (consta	nte sna	nning)	408.426.465	berekening statisch hansels	la lianan	204			500
3 Resulterende spanning	ne spa	iiiiiiig)	408, 420,405	Statisch benealde staafwerl	le ligger				502
4 Schuifspanning t g y dwa	rebrac	ht hij.	408.456	en vakworken	(en		200		
- een rechthoekige den	usniac	in oŋ.	400, 450	Statisch moment			308		
- een samengestelde rechthoel	rige den		401	(= linesir opportulate mar				400	
- dunwandige profielen	age usi	L	470-400	(= Intean opperviate-mon	ient)			428	
- uniwalidige proheieli			402-403	Statisch ondepaalde constru	icties	004			500
5 Schuifenanning tax wri	nging		404	- omschrijving		204			529
6 Balang horizontale achuif	nging	huidind	407-495	- berekening statisch onbep.	lıgger	205		10.1	503
Spanninga rak diagram	sp. bij	ouiging	483	Steenachtige materialen ?	071			404	
Spannings-rek-ulagiani		INCOM		Sterkte (constructie-eis)	0/1				
Spanningscombinaties [zie: 3	SPANN T	IING5 VI	SKDELING II J	Sujfneid (constructie-eis)	072				
1 Dii ććn bosiskalastin z sov	1			 Cross-stijfheid (= liggerstij 	fheid)				541
1 Bij een basisbelastinggeva	a 1		410 406	– Staaf-stijfheid					541
- t.g.v. Bulgende momenten			418-426	Stijl (constructie-onderdeel	;				
- t.g.v. Dwarskrachten	004		4/8-484	– definitie		202			540
– t.g.v. Normaalkrachten	094		416-417	Stijve kern			365		
- t.g.v. Wringende momenten			486-497	Stroomlijnen-analogie				487	
bij kokerprofielen	**		494-497	Structuur-Mechanica				404-4	407
SPANNINGSVERDELING	11			Stuik					557
2 Spanningscombinaties			452	Stuwdruk (wind)	078				
- teken van de veerkrachtsgeva	allen		453	 numerieke waarden 	079				
3 Combinaties van veerkrac	htsgev	allen	454-455	Stijgende diagonalen			327		
 buiging + dwarskracht 			456	SUPERPONEREN VAN					
- - buiging om de y-as of de z-	-as		458-459	MOMENTENLIJNEN LIC	GERS	215-	239		
 – dubbele buiging 			460-463	Overzicht methoden I, II, II	I	278			
 buiging + normaalkracht 			464-467	I Splitsen van de belasting					
 – invoering druklijn 			468-469	 momenten van gelijk teken 		279			
 – excentrisch belaste rechth. 	dsn.		470-471	 momenten van ongelijk teke 	en	280			
 – dubbele buiging + normaal 	lkracht		474	– voorbeelden		281			
Spant				II Splitsen van de ligger in	moten	282			
 omschrijving 	203	308		 combinatie van I en II 		283			
 twee-scharnierspant 	203			III Verplaatsen v. d. opleggi	ngen	284			
- drie-scharnierspant	203		407	 combinatie van II en III 		285			
Staaf (definitie)	202	300-30	1	Symbolen					
Staafwerk		300-31	3	 omschrijving 	010				
 driehoekig stramien 		302		 lijst van symbolen 	012				
 rechthoekig stramien 		303		Symmetrie en Keersymmetr	rie				
 – buigvaste verbinding stave 	n	304		 belasting op koorden 		297			560
				 belasting op liggers 		296-2	297		

T - U - V - W

T-07

Tekenafspraken vervormingen: - helling 505 505 - kromming zakking 505 224 Teken van snedekrachten tekenafspraken 431 Temperatuur 097 Tensor 408 Traagheidsmoment 428 [*zie*: Kwadratisch oppervlakte-moment] 309 Trek, trekkracht (vakwerk) Twee-scharnierspant 378 540; 550 Uitzettings-coëfficiënt 097 Vakwerken (omschrijving) 203 314 vakwerkvormen 315 schematisering 316 203 Vakwerkligger 314 Vakwerkspant 203 315 Vallende diagonalen 327 573 Variërende buigstijfheid Vector 008 001 - kracht-vector - moment-vector 033 Veerkrachtsgevallen 452-455 Veerstijfheid 064 Veranderlijke belastingen 074 076 - op vloeren Verende inklemming 207 Veren-model - voor een buigend moment op een staaf 099 098 voor een normaalkracht op een staaf voor de ondergrond 056-057 – gedeeltelijk meewerkend grondvlak 065 Vergeet-me-nietjes 517; 576 - toepassingen 520-521 - controle basis-belastinggevallen 524-525 Verplaatsen van een kracht - langs de werklijn 001 buiten de werklijn 014 Verplaatsingsmethode 529 Versterkte balken 564 Verstijvingskruis 367 Verticale schijven 368 VERVORMINGEN I 1 Principe bij een lijnspanningstoestand 414 bij zuivere buiging 418 499 bij wringing + dwarskracht bij zuivere afschuiving A-400 – bepaling glijdingsmodulus

2 Oorzaak vervormingen bij liggers door buigende momenten 565 door normaalkracht 558 door schuifspanningen A-400 3 Constructie-type vrij opgelegde ligger 233 - invloed randvoorwaarden 237 VERVORMINGEN II: Rekenmethodiek bij: 1 Normaalkrachten 556-564 - bij twee geschoorde staven 558-559 - bij een symmetrisch belast koord 561 bij vakwerken (Williot) 563 bij een versterkte balk 564 ----2 Buigende momenten analytisch benodigde differentiaalvergelijking 565 ---splitsen van de diffenrentiaalvergelijking 566-567 3 Buigende momenten grafisch: Momentenvlak-methode I, voor vrij opgelegde liggers 558-569 - belast door een puntlast 570-571 – belast door een q-last 572 4 Buigende momenten grafisch: Momentenvlak-methode II, - voor éénzijdig ingeklemde liggers 574-578 - recapitulatie vergeet-me-nietjes 576-577 - algemene toepassing 578 579 - willekeurig gekromde ligger 580 - volledig ingeklemd portaal - drie-scharnierspant 581 Verwelving 486 Vlak staafwerk 308 Vlakke spanningstoestand 412-413 Vlakke doorsneden blijven vlak 418 Volledig ingeklemd portaal 554 Volledige inklemming 088-089 209 Volumegewicht 075 Voorschriften: inleiding 070 - overzicht TGB 1990 070 Vormvastheid staafwerken 305-307 - driehoekig stramien 310-311 - rechthoekig stramien 312-313 Vrij opgelegde ligger 206; 270 Waterdruk 402 Weerstandsmoment 421; 427-428 Werklijn 007 Wet van Hooke 009 414 557 Wetten van Newton: 1 Gravitatiewet 030 2 Bewegingswetten 031 wet van de traagheid 031 - kracht = massa \times versnelling 031 actie = reactie031 3 Relatie kracht - massa 032

7

Williot diagram		562-563
Windbelasting	078	
– winddruk	079	
 windzuiging 	079	
 windvormfactoren 	079	
Wrijving	047	
- bij een horizontaal contactvlak	047	
 bij een hellend contactvlak 	048	
 wrijvingscoëfficiënt 	047	
Wringing plus dwarskracht		498
WRINGSTIJFHEID		
1 Massieve profielen		
 rechthoekig profiel 		488
 cirkelvormig profiel 		492-493
2 Dunwandige profielen		
 enkelvoudig samenhangend 		491
 meervoudig samenhangend 		494-495
 – visualisatie via de membraan- 	analogie	496-497
Zeepvlies-analogie (wringing)		487
Zuiver buigend moment		424
Zuivere buiging	418	
Zuivere druk of trek	416	
Zuivere wringing	486	
Zwaartelijn	429	
Zwaartepunt (rechth. blok)	424; 429	

