Februari 2001

Prof. ir. W.J. Beranek

KRACHTSWERKING Deel 4

SPANNINGEN

FACULTEIT DER BOUWKUNDE Leerstoel Krachtswerking

19020001077

KRACHTSWERKING Deel 4 SPANNINGEN

Spanningsverdeling in lineaire constructiedelen

Normaalkracht

Buiging

Doorsnede-grootheden

Spanningscombinaties

Buiging plus dwarskracht Dubbele buiging Buiging plus normaalkracht Wringing

Prof. ir. W.J. Beranek

KRACHTSWERKING Deel 4 SPANNINGEN Februari 1999 [401-405] + [400 - 499] + Trefwoordenlijst [T-01 - T-08]

Dit is een herziene uitgave van KRACHTSWERKING 2 deel 1: Januari 1990 [300-407] zonder het hoofdstuk Vervormingen

401 HOOFDSTUK-INDELING

402	Hoofdstuk 19	Spannings verdeling
403	Hoofdstuk 20	Spanningscombinaties

404 Lijst van symbolen

400 401 402	19.1 19.1.1 19.1.2 19.1.3	INLEIDING Noodzaak voor het invoeren van spanningen Spanningen in gassen en vloeistoffen Voorwerp in een vloeistof
404	19.1.4	Spanningen in steenachtige materialen
406	19.2 19.2.1	NORMAALSPANNINGEN EN SCHUIFSPANNINGEN Definitie van spanning
408	19.2.2 19.2.3	Overzicht Aanduiding van spanningen
410	19.3	SPANNINGEN DOOR NORMAALKRACHTEN
	19.3.1	Lijnspanningstoestand
412	19.3.2	Vlakke spanningstoestand
414	19.3.3	Vervormingen bij een lijnspanningstoestand Recapitulatie
416	19.3.4	Spanningsverdeling bij zuivere trek of druk
417	19.3.5	Excentrisch aangrijpende trek- of drukkrachten
418	19.4	SPANNINGEN DOOR BUIGENDE MOMENTEN
	1941	Vervormingen hij zuivere buiging
420	1942	Snanningsverdeling in een rechthoekige doorsnede
422	1943	Algemene formules voor de vervormingen
424	1944	Evenwichtsvoorwaarden
426	1945	Snanningsverdeling
420	19.4.5	Weerstandsmoment
427	19.4.0	Bepaling van de benodigde doorsnede
428	19.5	DOORSNEDE-GROOTHEDEN
100	19.5.1	Algemeen
429	19.5.2	Lineair oppervlakte-moment en zwaartepunt
430	19.5.3	Kwadratisch oppervlakte-moment als functie van de afstand tot de as
431	19.5.4	Berekening met behulp van integraalrekening
432	19.5.5	Rechthoek
434	19.5.6	Driehoek
436	19.5.7	Cirkelvormige doorsneden
437	19.6	SAMENGESTELDE DOORSNEDE-VORMEN
120	19.0.1	Doorsneden met de alte fér avanuet i
438 439	19.6.2 19.6.3	Algemene formulering
440	19.7	ASYMMETRISCHE DOORSNEDEN
	19.7.1	Inleiding tot de problematiek
441	19.7.2	Benaling van I
442	19.7.3	Gebruik van tabellen
443	19.8	KWADRATISCH OPPERVLAKTE-MOMENT Visuele methode
	19.8.1	Recapitulatie
444	19.8.2	Visualisering van het probleem
445	19.8.3	Zuiver buigend moment in een doorsnede
446	19.8.4	Bepaling van het moment uit het spanningsverloop
448	19.8.5	Bepaling kwadratisch oppervlakte-moment
450	19.8.6	Onderlinge vergelijking dunwandige profielen
451	19.8.7	Vereenvoudigde bepaling I bij dunwandige profielen

SPANNINGSCOMBINATIES Buiging plus dwarskracht; 20 Dubbele buiging; Buiging plus normaalkracht; Wringing

20	SPAN Dubbe	ININGSCOMBINATIES Buiging plus dwarskracht; ele buiging; Buiging plus normaalkracht; Wringing 403
452	20.1 20.1.1	INLEIDING Definitie veerkrachtsgevallen
453	20.1.2	Teken van de veerkrachtsgevallen
454	20.1.3	Combinatie van een aantal veerkrachtsgevallen
456	20.2 20.2.1	BUIGING PLUS DWARSKRACHT Algemeen
457 458	20.2.2 20.2.3	Berekening van de normaalspanningen ten gevolge van buiging Spanningsverdeling T-balk
460	20.3 20.3.1	DUBBELE BUIGING Overzicht
461	20.3.2	Horizontale en verticale belasting tezamen
462	20.3.3	Verticale belasting bij geroteerde hoofdassen van de doorsnede
464	20.4	BUIGING PLUS NORMAALKRACHT
165	20.4.1	Algemeen Supermenenen van normaalen ander an britaan i
405	20.4.2	Superponeren van normaalspanningen en buigspanningen Kolom onder invloed van vertigele en beigentele belesting
400	20.4.5	Introductie druklijn
408	20.4.4	Excentrisch belaste rechthoekige doorsnede
472	20.4.5	Benaling van M en N uit het spanningsverloop
473	20.4.7	Rechthoek: bepaling van de kracht en de excentriciteit uit de spanningsverdeling
474	20.4.8	Excentrische kracht grijpt aan buiten de hoofdassen
475	20.5	EXCENTRISCH GEDRUKTE DOORSNEDEN
	20.5.1	Algemeen
476 477	20.5.2 20.5.3	Kern bij een rechthoekige doorsnede Gedeeltelijk meewerkende rechthoekige doorsnede
478	20.6	DWARSKRACHT
	20.6.1	Algemeen
400	20.6.2	Evenwichtsbeschouwing op een ligger-elementje
480	20.6.3	Bepaling van de verticaal werkende schuitspanning
481	20.6.5	Schuifspanningsverloop rechtnoekige doorsnede
482	20.0.5	Vereenvoudigde schuifspanningsberekening
485	20.6.7	Belang van horizontale schuifspanningen
486	20.7	ZUIVERE WRINGING
400	20.7	Algemeen
487	20.7.2	Resultaten van de theorie van de St Vennant
488	20.7.3	Stroomlijnen-analogie
489	20.7.4	Schuifspanningsverdeling in een brede strip
490	20.7.5	Moment-vervormings-relatie bij een brede strip
491	20.7.6	Wringstijfheid van dunwandige profielen
492	20.7.7	Axiaal-symmetrische doorsnede-vormen
494	20.7.8	Spanningsverdeling bij kokerprofielen
496	20.7.9	Membraan-analogie
498	20.8	WRINGING PLUS DWARSKRACHT
499	20.8.1 20.8.2	Vervorming door buiging, dwarskracht en wringing
A 400	20.9	Appendix Vervorming door schuifspanningen (blz. 500)
T-01 –	T-08	Trefwoordenlijst

LIJST VAN SYMBOLEN

kleine letters

HOOFDLETTERS

a	versnelling	[l t ⁻²]	A	oppervlakte	$[l^2]$
a, b, c	afstanden	[l]	С	constante	[1]
b	breedte	[1]			
d	middellijn	[1]			
е	excentriciteit	$\begin{bmatrix} l \end{bmatrix}$	E	elasticiteitsmodulus	$[kl^{-2}]$
d, e, f	afstanden	$\begin{bmatrix} l \end{bmatrix}$	F	uitwendige kracht	$\begin{bmatrix} k \end{bmatrix}$
g	versnelling zwaartekracht	$[lt^{-2}]$	G	glijdingsmodulus	$[k\bar{l}^{-2}]$
ĥ	hoogte	[l]	H	totale hoogte	Ī1]
i	oppervlakte-moment-arm	$\begin{bmatrix} l \end{bmatrix}$	Ι	kwadr. oppervlaktemoment	Γ ⁴ 1
	**		It	geometrische factor tegen	
k	kernstraal	[1]		wringing	$[l^4]$
k	veerstijfheid (veerconstante)	$[k^{l-1}]$	K	uitwendig moment, koppel	[kl]
l	lengte, overspanning	ו <i>ו</i> ו	L	totale lengte	[1]
m	massa	[m]	M	buigend moment	$\begin{bmatrix} k \\ l \end{bmatrix}$
			M_{t}	wringend moment	$\begin{bmatrix} k \\ l \end{bmatrix}$
n	aantal	[1]	N	normaalkracht	$\begin{bmatrix} k \end{bmatrix}$
D	kracht per oppervlakte	$[kl^{-2}]$			[~]
r a	kracht per lengte	$[kl^{-1}]$			
r	straal	[1]	R	reactiekracht	[k]
		[.]	R	kromtestraal	$\begin{bmatrix} n \\ 1 \end{bmatrix}$
			S	lineair oppervlaktemoment	r / 3]
			Š	staafkracht	
t	tiid	$\begin{bmatrix} t \end{bmatrix}$	2		[~]
t	dikte				
u.	verplaatsing				
v	snelheid	$\begin{bmatrix} l & l \\ l & t \end{bmatrix}$	V	volume inhoud	r <i>1</i> ³ 1
,	Shemera		\dot{V}	dwarskracht	$\begin{bmatrix} l \\ k \end{bmatrix}$
w	doorbuiging	[]]	Ŵ	weerstandsmoment	$\begin{bmatrix} n \\ j \end{bmatrix}$
x. v. z	lengte-coördinaten				Γ, 1
Z0	inwendige hefboomsarm				
~0	B•	r - 1			

Griekse lettertekens

.

<i>α, β, γ</i>	hoeken lineoire uitzettingscoöfficiönt	$\begin{bmatrix} 1 \end{bmatrix}$	v, V h H	verticaal		richting
a	coëfficiënt (wringing)		п, п 1 т	links rechts		
N N	kracht per volume	[1]	1, 1 may	maximum		krachten
Y N	warklaining rachta hoak		min	minimum		KIACIIICII
Y	verkienning feelite noek		шш	mmmum		
ε	rek, relatieve vervorming	[1]	extr	extremum		
θ	hoekverdraaiing (wringing)	[1]	repr	representatief		belasting
к	kromming	$[l^{-1}]$	mom	momentaan		Ŭ
μ	wrijvings-coëfficiënt	[1]	n, t	normaal, tangentiaal	a	ssenkruis
V	contractie-coëfficiënt	[1]	р	polair		
ρ	massa per volume	$[m l^{-3}]$	_	-		
σ	(normaal)spanning	$[k l^{-2}]$	Dimens	sie	Eenhe	eid
σ'	spanningsgradiënt $d\sigma/dz$	$[kl^{-3}]$				
au	schuifspanning	$[kl^{-2}]$	[<i>m</i>]	massa	kg	
φ	hoek (buiging)	[1]	[l]	lengte	m	mm
$\dot{\phi}$	rotatie	[1]	$\begin{bmatrix} t \end{bmatrix}$	tijd	S	
Ψ	hoek (afschuiving)	[1]	$\begin{bmatrix} k \end{bmatrix}$	kracht	kN	Ν
$\dot{\Phi}$	spanningsfunctie (wringing)	$[k \bar{l}^{-1}]$	[T]	temperatuur	° C	

Indices

19 SPANNINGEN

Spanningsverdeling door Normaalkracht en Buiging in lineaire constructiedelen; Doorsnedegrootheden

19.1 INLEIDING

19.1.1 NOODZAAK VOOR HET INVOEREN VAN SPANNINGEN

Bij de behandelde constructies in KW-1-2-3 hebben we ons vrijwel uitsluitend bezig gehouden met de snedekrachten, die in lineaire constructiedelen kunnen ontstaan ten gevolge van de uitwendige belastingen. Deze snedekrachten worden aangeduid als:

- Normaalkracht N
- Dwarskracht V
- Buigend moment M

Het is echter niet mogelijk, om aan de hand van de grootte van de optredende krachten en momenten alléén, rechtstreeks de afmetingen te bepalen die de beschouwde constructiedelen moeten bezitten. Bepalend voor het gedrag van een materiaal, is namelijk de grootte van de kracht per eenheid van oppervlakte, en deze grootheid wordt aangeduid als *spanning*. Het bezwijken van een materiaal wordt dan ook bepaald door de numerieke waarde van de spanning. Als een vrouw op blote voeten over een parketvloer wandelt, zal de vloer hiervan geen enkele schade ondervinden. Maar als ze schoenen met naaldhakken aandoet en haar volle gewicht alleen op de naaldhakken laat rusten, is er grote kans dat de houten vloer onherstelbaar wordt beschadigd. In beide gevallen is de uitgeoefende kracht op de vloer dezelfde gebleven, maar in het tweede geval is de kracht per eenheid van oppervlakte sterk toegenomen.

In de hoofdstukken 19 en 20 wordt besproken op welke wijze in lineaire constructiedelen de spanningen kunnen worden bepaald, die door normaalkrachten, dwarskrachten en buigende momenten worden veroorzaakt. Voorts wordt heel globaal ingegaan op de spanningsverdeling ten gevolge van wringende momenten.

Tevens wordt een eerste indicatie gegeven op welke wijze aan de hand van de optredende spanningen de afmetingen van constructie-onderdelen globaal kunnen worden bepaald.

De vervormingen die als gevolg van deze spanningen ontstaan, zullen pas worden behandeld in KW-5. Met behulp van deze gegevens kan worden gecontroleerd of de doorbuigingen niet te groot worden. Bovendien zijn deze vervormingen nodig om statisch onbepaalde constructies te kunnen berekenen in KW-5 en KW-6.

a

2

19.1.2 SPANNINGEN IN GASSEN EN VLOEISTOFFEN

In de natuurkunde wordt het begrip spanning voornamelijk gebruikt voor gassen en vloeistoffen. In beide gevallen is er in elk punt sprake van een alzijdige druk.

Als we een gas onder druk brengen, bijv. door het volume van een afgesloten ruimte te verkleinen (zuiger), dan heerst overal in dat gas één en dezelfde alzijdige druk. Bij de wanden van de afgesloten ruimte is deze druk dan ook loodrecht op elk wandgedeelte gericht, zie fig. 1a.

Als we een aquarium met water vullen, wordt op elk onderdeeltje van de wand waar het water mee in contact is, een druk uitgeoefend die weer loodrecht staat op het betreffende deel van de wand. Voorts is de druk in elk punt evenredig met de verticale afstand afstand van het beschouwde punt tot het wateroppervlak, zie fig. 1b.

De druk van gassen realiseren we ons over het algemeen pas als deze druk afwijkt van de atmosferische druk, bijv. bij het oppompen van een fietsband.

De atmosferische druk ontstaat door het gewicht van de luchtlaag boven ons ter plaatse van het aardoppervlak. Afhankelijk van de weersomstandigheden treden hier geringe fluctuaties in op.

De importantie van de luchtdruk wordt pas zichtbaar als we kans zien de lucht uit een gesloten ruimte te verwijderen. Als we een gesloten blik met een vacuümpomp leegpompen, zal het blik door de luchtdruk worden verfrommeld, zie fig. 2.

De soortelijke massa van lucht ter plaatse van het aardoppervlak bedraagt ongeveer:

 $\rho = 1,25 \text{ kg/m}^3$

Omdat de lucht echter overal rondom ons aanwezig is en we de luchtdruk niet als zodanig ervaren, worden alle krachten en gewichten uitgedrukt ten opzichte van de atmosferische druk. We doen voor onze statische berekeningen dus net of de (statische) luchtdruk niet aanwezig is. Met de dynamische luchtdruk (wind) hebben we uiteraard terdege rekening te houden.

Het belangrijkste gegeven dat we aan de druk van vloeistoffen en gassen kunnen ontnemen, is het feit dat de druk ook op het allerkleinste onderdeeltje aanwezig is.

- Fig. 1 De druk van gassen en vloeistoffen is altijd loodrecht op het wandoppervlak gericht
- a. gasdruk in een bol
- b. waterdruk op de wanden van een aquarium
- NB p_1 = vloeistofdruk op 1 m diepte; voor water geldt: p_1 = 10 kN/m²

Fig. 2 'Kunstwerk' dat is ontstaan door een stalen' doos' vacuum te zuigen. Mekelweg Delft

19.1.3 VOORWERP IN EEN VLOEISTOF

We beschouwen dit onderwerp in de eerste plaats om duidelijk te maken, dat ook in vaste stoffen spanningen in elke willekeurige richting kunnen optreden. In de tweede plaats hebben we er mee te maken als de kelders van een gebouw zich in het grondwater bevinden. De opdrijvende krachten op een gebouw mogen natuurlijk nooit groter zijn dan het gewicht van het gebouw en de wanden en vloeren moeten de waterdrukken ook kunnen weerstaan.

We dompelen een kubus van het een of andere materiaal in een vloeistof. Door de vloeistof, bijv. water, worden gelijkmatig verdeelde drukken op de zes zijvlakken van de kubus uitgeoefend, zie fig. 1a1. Deze drukken bezitten per zijvlak een resultante, zie fig. 1a2.

De resultante per zijvlak kan rechtstreeks door middel van integratie worden bepaald, zoals in fig. 1b1 is weergegeven, maar natuurlijk ook met behulp van regels, die op de resultaten van deze integratie zijn gebaseerd, zie fig. 1b2.

In horizontale richting houden de krachten in xen y-richting elkaar in evenwicht. In verticale richting is de opwaarts gerichte waterdruk groter dan de neerwaarts gerichte waterdruk. Het hangt van het gewicht van de kubus af, wat

zal gebeuren. Als de neerwaarts gerichte kracht door het eigen gewicht groter is dan de resulterende opwaartse gerichte kracht van de verticale waterdrukken, zal het voorwerp zinken tot het de bodem bereikt. Zijn beide krachten even groot, dan zal het voorwerp in het water zweven.

Als de opwaarts gerichte kracht van het water groter is dan het eigen gewicht van de kubus, zal deze zich omhoog bewegen. Zodra een zodanig deel van de kubus boven water uitsteekt, dat de opwaarts gerichte waterdruk en het eigen gewicht F_g van de kubus in evenwicht zijn, zal de kubus deze stand behouden, zie fig. 1c.

Fig. 1 Waterdruk op een kubus

- a1 Drukverloop op vier zijvlakken van de kubus
- a2 Resultante van de druk per zijvlak
- b1 Bepaling van de grootte en de ligging van de resultante met behulp van integraalrekening
- b2 Grafische bepaling van de ligging van de resultante [473]
- c. Evenwicht van een drijvende kubus

Om de reactiekrachten te kunnen leveren die evenwicht maken met de waterdrukken, zal de kubus in geringe mate moeten indrukken. De vervormingen van de kubus zijn in dit geval zeer regelmatig verdeeld, zie fig. 2a1.

Als we nu als gedachtenmodel een verticale plak van de kubus afsnijden, dan moet die plak in evenwicht zijn; enerzijds onder invloed van de waterdruk en anderzijds door de spanningen die door het resterende deel van de kubus op de afgesneden plak worden uitgeoefend, zie fig. 2b.

Hieruit volgt dat in elk punt van de kubus spanningen optreden, die een continu verloop hebben over de gehele inhoud van de kubus.

Dit geldt zowel voor de x-richting als de y- en de z-richting. De spanningen in x- en y-richting zijn nu nog wel aan elkaar gelijk, maar de spanningen in z-richting vertonen daarvan afwijkende waarden door de invloed van het eigen gewicht van de kubus, zie fig. 2b. We kunnen in dat voorwerp dus niet meer van een alzijdige druk spreken. Gemakshalve worden de spanningen op de zijvlakken van een elementair deeltje van een lichaam meestal maar door één vector weergegeven, zie fig. 2c, in plaats van door een zeer groot aantal vectoren zoals in fig. 2a, b.

- Fig. 2 Kubus op de bodem van een vat, dat is gevuld met een vloeistof
- a1 Sterk overdreven vervorming van de kubus onder invloed van de onder a2 genoemde drukken
- a2 Uitwendige waterdrukken en reactiekrachten vanuit de bodem (gewicht kubus gestyleerd aangegeven)
- Evenwicht van een verticale moot uit de kubus, zoals weergegeven in fig. a2 rechts: waterdrukken
 - links: drukspanningen vanuit de materie
- c. Evenwicht van een elementair deeltje van de moot aan de onderzijde vlak boven de bodem, zoals weergegeven in fig. b

(het elementje is in fig. c vergroot weergegeven)

19.1.4 SPANNINGEN IN STEENACHTIGE MATERIALEN

De meest voorkomende bouwmaterialen zijn van steenachtige aard, zoals metselwerk en beton. De druksterkte van dergelijke materialen is aanmerkelijk groter dan de treksterkte. Om voor het ontstaan van scheuren en het bezwijken een aannemelijk verklaring te kunnen geven, moet rekening worden gehouden met de korrelstructuur die dergelijke materialen bezitten.

Steenachtige materialen kunnen in principe worden beschouwd als loskorrelig materialen, die op het een of andere tijdstip aaneen zijn gekit, door natuurlijke of kunstmatige oorzaken.

Voor de bepaling van de gedachte beschouwen we los grind, een van de basisbestanddelen van beton. Doordat het materiaal inwendige wrijving bezit, kunnen we er een heuvel van maken, zie fig. 1a. Als we het grind vervangen door glazen stuiters, dan komen we eigenlijk niet verder dan een uitgestrekte 'plas' ter hoogte van één laag, omdat dit materiaal géén inwendige wrijving bezit, zie fig. 1b. Als we zorgen dat de onderste laag op zijn plaats blijft, dan kunnen we van de stuiters wel pyramiden stapelen, zie fig. 2a, waar een overeenkomstige stapeling van ping-pong ballen is weergegeven. Voor het tweedimensionale geval blijkt de tegendruk gelijkmatig verdeeld te zijn, omdat alle krachten diagonaalsgewijs moeten worden afgevoerd, zie fig. 2b. Dit geldt ook voor het drie-dimensionale geval.

Maar zodra we van de stuiters een prisma willen vormen, hebben we een mal nodig, zie fig. 3a. Als we die omhoog trekken, stromen de stuiters weg als een vloeistof. Maar als we de mal opvullen met een zachte en slappe vloeibare vulstof, zoals gelatine, dan vormen de stuiters na het stollen van de gelatine een samenhangend geheel dat relatief sterk is. Als we de woorden stuiters en gelatine, resp. vervangen door de woorden grind en mortel, dan is de werking van beton in hoofdtrekken verklaard. Omdat bij deze aanpak de structuur van het materiaal is geïntroduceerd, spreken we van Structuurmechanica [407].

- a. Mèt inwendige wrijving: grind b.
- Zonder inwendige wrijving: glazen stuiters

a

2

Fig. 2 Pyramide van even grote bollen

- a. Drie-dimensionale stapeling
- b. Tegendruk voor het twee-dimensionale geval. Alleen de donker gekleurde bollen dragen hun gewicht af naar de witte verticale reactiekracht

Voor een analyse van de krachtswerking nemen we aan dat alle stuiters precies dezelfde bolvorm hebben en nauwkeurig passend in de mal zijn aangebracht. We verwaarlozen nu verder het eigen gewicht van de stuiters, en brengen in verticale richting een gelijkmatig verdeelde bovenbelasting aan. Alle krachten tussen de bollen kunnen alleen via de raakpunten worden overgebracht. Omdat de inwendige wrijving ontbreekt kunnen geen schuifkrachten worden overgedragen; alle krachten moeten dus ook door de middelpunten van de bollen gaan. De bovenbelasting moet dus zig-zaggend via de bollen naar de ondersteuning worden overgebracht, zoals voor één stelsel puntlasten is weergegeven in fig. 3b. De wanden van de mal kunnen dus worden verwijderd als ter plaatse van de halve bollen aan de rand, horizontale steunkrachten worden aangebracht. Deze drukkrachten kunnen op hun beurt weer vervallen, als we de ruimte tussen de bollen opvullen met een zacht vulmateriaal dat zich hecht aan de bollen en in staat is om trekkrachten over te brengen; fig. 3c.

In een verticale snede werken nu schuin gerichte drukkrachten en horizontale trekkrachten. De horizontale resultante van al deze krachten is gelijk aan nul, maar tussen de bollen onderling werken wel degelijk trek- en drukkrachten. De sterkte van het materiaal wordt dan ook bepaald door de sterkte van de 'lijmverbinding' tussen de bollen. En deze lijmverbinding bezwijkt veel eer bij uitwendige trek dan bij uitwendige druk. Voor de berekening tenslotte kan het bollenmodel worden vervangen door een staafwerkmodel volgens fig. 3d. In het werkelijke materiaalmodel voor metselwerk en beton kunnen de bollen zowel normaalkrachten als schuifkrachten overbrengen. Met behulp van computerberekeningen is dan ook de ontwikkeling van het scheurenpatroon na te gaan tot aan bezwijken. Dit is van belang omdat tegenwoordig wordt geëist dat voor de dimensionering van een constructie, de bezwijktoestand wordt berekend.

Voor de bepaling van de globale afmetingen van een constructie – ter controle van de gebruikte vuistregels – zullen we echter een eenvoudiger materiaalmodel gebruiken, waarbij wordt uitgegaan van het al in KW-0 genoemde 'ideale materiaal' met de volgende eigenschappen [095]:

- homogeen
- isotroop
- lineair elastisch

Aan dit materiaal wordt wel een treksterkte en een druksterkte toegekend, maar de ontwikkeling van de scheurvorming wordt niet beschouwd en de bezwijktoestand wordt sterk gestyleerd weergegeven.

NB Alle berekeningen in KW-4 zijn bestemd om tot een reële dimensionering te komen, en niet om controlerende instanties er van te overtuigen dat de letter van de voorschriften exact is nageleefd.

a. Zijwanden zijn nodig om de vorm te handhaven

b. Wanden vervangen door uitwendige krachten

c. Zacht vulmateriaal neemt de uitwendige horizontale drukkrachten over als inwendige trekkrachten

d. Vervanging van de bollen door een driehoekig staafwerk

19.2.1 DEFINITIE VAN SPANNING

Zoals reeds in KW-0 [094-099] werd besproken, is de spanning gelijk aan de kracht per eenheid van oppervlakte:

$$\sigma = \frac{F}{A} \tag{1}$$

In feite moet de spanning wat zorgvuldiger worden gedefiniëerd en wel als volgt, zie fig. 1:

$$\sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{\mathrm{d}F}{\mathrm{d}A}$$
(1a)

In het algemeen zal de spanning immers van punt tot punt variëren, zodat slechts over een heel klein oppervlakje de spanning als constant mag worden beschouwd, zie bijv. fig. 402-1.

Slechts in een beperkt aantal gevallen zal de spanning over grote oppervlakken constant blijven, zoals bijv. in een horizontaal vlak van de daar beschouwde kubus.

We beschouwen nu een willekeurig voorwerp (lichaam) dat zich in rust bevindt onder invloed van een aantal uitwendige krachten, zie fig. 2a. Het lichaam zorgt ervoor dat de uitwendige krachten met elkaar evenwicht kunnen maken, en zal daarbij moeten vervormen. Aangezien ook in de vervormde toestand alle punten van het lichaam aan elkaar blijven passen, zullen de vervormingen continu moeten verlopen en hetzelfde moet dan gelden voor de daarbij behorende spanningen.

We brengen weer een snede aan die het lichaam in tweeën verdeelt, zie fig. 2b. Uit evenwichtsoverwegingen zal dan achtereenvolgens voor het linkerdeel en het rechterdeel moeten gelden:

Links: $\sum F_{\text{links}} = \int \sigma_{\text{links}} \, \mathrm{d}A$

Rechts: $\sum F_{\text{rechts}} = \int \sigma_{\text{rechts}} \, dA$

Aangezien geldt: $\Sigma F_{\text{links}} = \Sigma F_{\text{rechts}}$ zullen ook de integralen gelijk moeten zijn.

Fig. 1 Definitie van spanning

Fig. 2 Lichaam onder invloed van een aantal krachten a. De krachten maken via het lichaam evenwicht met elkaar

b. Evenwicht van elk deel van het lichaam, dat door een fictieve snede in tweeën is verdeeld

Voor elk onderdeeltje van de beschouwde doorsnede zullen de spanningen links en rechts dan ook aan elkaar gelijk moeten zijn.

Spanningen treden net als snedekrachten altijd paarsgewijs op en er geldt het beginsel: actie = reactie

Zolang er tenminste één kracht op een afgesneden deel werkt, zullen er in de snede spanningen ontstaan, onverschillig hoe de snede verder door het lichaam verloopt.

Structuur-mechanica

Beschouwen we het materiaalmodel met de stuiters van fig. [405-4] dan moeten we het beschouwde vlakje ΔA zo groot kiezen dat we een voldoend groot aantal trek- en drukkrachtjes aantreffen om van een gemiddelde spanning te mogen spreken. Zoals reeds eerder is betoogd zijn deze gemiddelde spanningen bij steenachtige materialen minder effectief om scheurvorming te kunnen voorspellen dan de individuele krachtjes tussen de bollen. Omdat de krachten die tussen de bollen worden overgedragen gemakkelijk in richting en grootte zijn te visualiseren, is de krachtswerking voor twee gedrongen liggers – voor het ongescheurde stadium – weergegeven in fig. 3.

In fig. 3a is een vrij opgelegde ligger weergegeven, die is belast door een gelijkmatig verdeelde belasting op de bovenrand. In het middendeel van de ligger blijven vlakke doorsneden vlak en komt de spanningsverdeling in hoofdtrekken overeen met de elementaire theorie [420]. Nabij de linker- en rechterrand buigen de drukkrachten vrij plotseling af naar de opleggingen. De trekkrachten zijn min of meer verankerd in deze drukzone.

In fig. 3b worden de ondersteuningen gevormd door twee scharnieren en is het eigen gewicht per bol ingevoerd. Doordat de verlenging van de onderrand wordt belemmerd, kan een duidelijke drukboog worden waargenomen. De trekband is nu over grote afstanden in deze drukboog verankerd en alleen in het middengebied van de ligger treedt een spanningsverdeling op die te verwachten is bij een zuiver buigend moment plus een drukkracht [465]. Als de vrij opgelegde ligger van fig. 3a in gewapend beton wordt uitgevoerd, dan neemt na scheurvorming de onderwapening de trekkrachten van het beton over en vertoont het spanningsbeeld veel meer gelijkenis met het spanningsbeeld van fig. 3b. Uiteraard is de totale trekkracht dan vrijwel geheel geconcentreerd ter plaatse van de wapening

Fig. 3

Berekening met behulp van de Structuur-Mechanica
Liggers op twee steunpunten onder een *q*-last
a. Vrij opgelegd (rol + scharnier)
b. Ondersteuning door twee scharnieren

De totale belasting in fig. 3b is $2,5 \times zo$ groot als in fig. 3a, maar de maximale trekspanningen in de onderrand zijn in beide gevallen gelijk.

De richtingen van de blokjes geven de richtingen van de krachten tussen de bollen weer en de breedte van de blokjes de grootte van de krachten. Alle combinaties van normaalkrachten en schuifkrachten zijn hierbij mogelijk. Verder geldt: wit = druk; zwart = trek. Alle krachten kunnen worden geïnterpreteerd als spanningen. Alleen aan de buitenranden worden de *krachten* weergegeven door de halve blokjes en de *spanningen* door de hele blokjes, die dus gedeeltelijk buiten de boven- en onderrand uitsteken.

19.2.2 OVERZICHT

Een spanning wordt – evenals een kracht – door een pijl weergegeven, die de grootte en richting van de spanning aangeeft.

Toch worden spanningen niet als *vectoren* aangeduid maar als *tensoren*. Behalve met de grootte en de richting van de spanning hebben we ook nog rekening te houden met de stand van het vlakje waarop de spanning werkt. Beschouwen we fig. [403-2b] dan blijkt immers al dat in één punt van de materie spanningen in allerlei richtingen kunnen werken. Het zal later blijken dat de onderlinge grootte van deze spanningen aan zekere wetmatigheden is gebonden. Deze materie behoort tot de Spanningsleer, die in KW-7 wordt behandeld.

In hoofdstuk 19 houden we ons alleen bezig met spanningen die optreden in lijnvormige elementen, die worden onderworpen aan normaalkrachten en constante buigende momenten.

Hierbij beperken we ons dan weer voornamelijk tot de zgn. normale doorsneden, dat wil zeggen; doorsneden loodrecht op de liggeras.

Soms is het zinvol om ook doorsneden te beschouwen die niet loodrecht op de liggeras staan. Dit wordt behandeld in [410] t/m [413]. Bij een eerste lezing kunnen deze onderdelen worden overgeslagen. In hoofdstuk 20 moet echter wel op enkele uitkomsten worden teruggegrepen.

In hoofdstuk 20 worden een aantal spanningscombinaties behandeld:

- Buiging plus dwarskracht [456]; [478]
- Dubbele buiging [460]
- Buiging plus normaalkracht [464]

Lijnvormige elementen kunnen ook worden onderworpen aan wringing. Voor de spanningsverdeling die hierdoor ontstaat, worden geen afleidingen verstrekt, omdat deze buiten het kader van KW-4 vallen. Er worden in 20.7 [486 e.v.] echter voldoende gegevens verstrekt om een alleszins redelijke indruk van de spanningsverdeling te kunnen verkrijgen.

19.2.3 AANDUIDING VAN SPANNINGEN

In fig. 1a is de gelijkmatig verdeelde spanning, die op een willekeurig vlakje werkt, weergegeven door één enkele pijl. Een dergelijke spanning wordt eigenlijk altijd direct weer ontbonden in een component loodrecht op het beschouwde vlakje en een component in het beschouwde vlakje, zie fig. 1b. De eerste spanning wordt aangeduid als de normaalspanning σ (sigma) en de tweede als de schuifspanning τ (tau) ; vergelijk de normaalkrachten en schuifkrachten in KW-0 [047-048]. Alhoewel de schuifspanning in het beschouwde vlakje ligt, is het toch gebruikelijk om de schuifspanning een stukje buiten het betreffende vlakje te tekenen, zie fig. 1c.

Teken van de spanningen:

In het twee-dimensionale geval worden normaalspanningen positief gerekend als ze vanuit het vlakje bezien naar buiten werken; schuifspanningen worden positief gerekend als ze vanuit het vlakje bezien naar rechts werken. Voor het vierkante elementje van fig. 1d betekent dit dat alle schuifspanningen elkaar 'nalopen'. Deze tekenafspraak is gehanteerd in [410-413].

Fig. 1 Normaalspanning en schuifspanning

a. Resulterende spanning op een vlakje

- b. Resulterende spanning ontbonden in een normaalspanning σ en een schuifspanning τ
- c. Gebruikelijke aanduiding van normaalspanning en schuifspanning
- d. Positieve spanningen op een vierkant elementje

Drie-dimensionaal geval

In het drie-dimensionale geval wordt een ietwat afwijkende notatie gebruikt. Hierbij wordt uitgegaan van een rechtsdraaiend *x-y-z*-assenkruis; *x*-as naar rechts, *y*-as naar voren en *z*-as verticaal omlaag, zie fig. 2a. Voor de bepaling van het teken wordt een vergelijkings-elementje zodanig in het eerste kwadrant gepositioneerd, dat drie zijvlakken van het elementje samenvallen met de drie coördinaatvlakken, zoals is weergegeven in fig. 2a.

Op de drie zijvlakjes die samenvallen met een coördinaatvlak, worden de spanningen positief gerekend als ze werken in de richting van de negatieve assen. Op de drie zijvlakjes die *niet* samenvallen, worden ze positief gerekend als ze werken in de positieve asrichtingen, zie fig. 2b. Alle spanningen zijn hier als positieve grootheden aangegeven. De schuifspanningen werken nu ten opzichte van elkaar in de juiste richting (naar dezelfde hoek van het elementje toegericht of juist er vanaf, zie fig. 2b).

In principe wordt de x-as langs, of in de richting van de as van het lijnvormige element gelegd en de z-as loodrecht hierop omlaag.

Alle mogelijke spanningen kunnen op universele wijze met het symbool σ worden aangegeven als we twee indices gebruiken. De eerste index geeft hierbij de richting aan van de *normaal* (= de loodlijn) van het beschouwde vlakje, de tweede index geeft dan de richting aan van de beschouwde *spanning* op dit vlakje, zie fig. 2b. Als gemakshalve maar één index wordt gebruikt, geeft die altijd de richting van de spanning weer. Alleen bij twee gelijke indices is dit systeem eenduidig. Schuifspanningen worden altijd met dubbele indices weergegeven, onverschillig of men het symbool σ of τ gebruikt.

Samengevat:

$$\sigma_{xx} = \sigma_x = \sigma$$
$$\sigma_{xy} = \tau_{xy} = \tau$$

Fig. 2 Aanduiding van spanningen

- a. Positionering van het vergelijkings-elementje in de oorsprong O
 - Een gerasterd vlakje valt samen met één van de coördinaatvlakken
 - Een wit vlakje valt *niet* samen met één van de coördinaatvlakken
- Aanduiding van spanningen met twee indices (het teken blijft hierbij buiten beschouwing) Alle getekende spanningen werken in de positieve richting

19.3.1 LIJNSPANNINGSTOESTAND

Indien een staaf wordt onderworpen aan centrische trek- of drukkrachten, hebben we te maken met een *lijnspanningstoestand*; de resulterende spanning op elk willekeurig gekozen vlakje is steeds evenwijdig aan één lijn: de staafas. In fig. 1a is zo'n staaf weergegeven. Op enige afstand van de aangrijpingspunten van de beide krachten blijkt de spanning volkomen gelijkmatig verdeeld te zijn over de normale doorsnede van het staafje, zie fig. 1b.

$$\sigma_{xx} = \frac{F_x}{A} \tag{2}$$

Vervolgens brengen we een snede aan, die een hoek α maakt met de normale doorsnede, zie fig. 1c. De kracht blijft gelijk, het oppervlak neemt toe en de spanning in deze doorsnede is dan gelijk aan:

$$\sigma_{nx} = \frac{F_x}{\frac{A}{\cos \alpha}} = \frac{F_x}{A} \cos \alpha = \sigma_{xx} \cos \alpha \quad (3)$$

Deze resulterende spanning σ_{nx} kan dan weer worden ontbonden in de richting loodrecht op het beschouwde vlakje en de richting evenwijdig aan dit vlakje (normale en tangentiale richting). We vinden dan, zie fig. 2:

$$\sigma_{nn} = + \sigma_{nx} \cos \alpha = + \sigma_{xx} \cos^2 \alpha \quad (4a,b)$$

$$\sigma_{nt} = - \sigma_{nx} \sin \alpha = - \sigma_{xx} \sin \alpha \cos \alpha$$

Brengen we een snede aan die loodrecht op de vorige staat, zodat $\beta = \alpha + \pi/2$ dan vinden we in deze snede als spanningen:

$$\sigma_{tt} = + \sigma_{xx} \cos^2 \beta = + \sigma_{xx} \sin^2 \alpha \quad (5a,b)$$

$$\sigma_{tn} = - \sigma_{xx} \sin \beta \, \cos \beta = + \sigma_{xx} \sin \alpha \, \cos \alpha$$

In fig. 3 is een vierkant elementje in de trekstaaf beschouwd waarvan de zijden loodlijnen bezitten in de n- en de t-richting. Op deze zijden zijn de normaal- en schuifspanningen uitgezet volgens de formules (4) en (5).

- Fig. 1 Spanningen in een trekstaaf
- a. Staafje onderworpen aan centrische trek
- b. Spanningen in de normale doorsnede
- c. Spanningen in een schuine doorsnede

- Fig. 2 Ontbinden van de resulterende spanning in een normaalspanning en een schuifspanning
- a. Mootje van de staaf met assenkruisen
- b. Normaal- en schuifspanning (hoek α)
- c. idem voor een hoek $\beta = \alpha + \pi/2$

Uit de formules (4) en (5) blijkt het volgende: De normaalspanningen op onderling loodrechte vlakjes zijn ongelijk groot maar de algebraische som van σ_{nn} en σ_{tt} blijft gelijk aan σ_{xx} , er geldt immers:

$$\sigma_{nn} + \sigma_{tt} = \sigma_{xx} \cos^2 \alpha + \sigma_{xx} \sin^2 \alpha =$$
$$= \sigma_{xx}$$
(6)

De schuifspanningen zijn gelijk maar tegengesteld gericht:

$$\sigma_{tn} = -\sigma_{nt} \tag{7}$$

Regel

Schuifspanningen die op onderling loodrechte vlakjes werken, zijn altijd gelijk en tegengesteld gericht. De pijlpunten wijzen dus naar dezelfde hoek toe of juist er vanaf. Vanuit het vlakje gezien werken positieve spanningen naar rechts.

De noodzaak hiervan volgt uit een evenwichtsbeschouwing van een rechthoekig elementje, zie fig. 4.

De normaalspanningen gaan door punt M, maken twee aan twee evenwicht met elkaar en leveren dus geen aandeel aan het moment, zie fig. 4a.

De schuifspanningen vormen echter twee aan twee een koppel. Beide koppels zullen elkaar moeten opheffen, zoals is afgeleid in fig. 4b.

Als we zeggen dat in een centrisch gedrukte of getrokken staaf geen schuifspanningen optreden, bedoelen we dat in de *normale doorsnede* geen schuifspanningen optreden.

In feite treden in alle willekeurig gerichte doorsneden schuifspanningen op die enkel maar gelijk zijn aan nul voor de waarden:

 $\alpha = 0$ en $\alpha = \pi/2$.

In het laatste geval is ook de normaalspanning gelijk aan nul.

Regel

Schuifspanningen en normaalspanningen die op hetzelfde vlakje werken, mogen vectoriëel worden opgeteld, net als krachten. We noemen zo'n vector de resulterende spanning Spanningen die op verschillende vlakjes werken mogen nooit worden opgeteld.

- Fig. 3 Trekstaaf met spanningen op een vierkant elementje, dat over een hoek α is geroteerd ten opzichte van het x-y-assenkruis
- a. Ligging van het beschouwde elementje
- b. Spanningen op het vergroot weergegeven elementje (gegevens volgens fig. 2b, c)

- Fig. 4 Evenwichtsbeschouwingen op een elementje Let op: Bij evenwichtsbeschouwingen moeten spanningen altijd eerst worden herleid tot krachten !
- a. Normaalspanningen op onderling loodrechte vlakjes zijn onafhankelijk van elkaar
- b. Momenten-evenwicht van de schuifkrachten; hierbij zijn alle schuifkrachten (dus ook de bijbehorende schuifspanningen) als positieve grootheden weergegeven)

 $+F_n * \Delta t + F_t * \Delta n = 0$ of well

+ $(\sigma_{tn} * b \Delta n) \Delta t$ + $(\sigma_{nt} * b \Delta t) \Delta n = 0$ zodat: $\sigma_{tn} = -\sigma_{nt}$

c. Werkelijke richting van de schuifspanningen

19.3.2 VLAKKE SPANNINGSTOESTAND

□ Bij een vlakke spanningstoestand zijn alle resulterende spanningen op een vlakje evenwijdig aan één plat vlak. Zo'n spanningstoestand zal dus optreden als zowel in x- als in y-richting spanningen op de zijden van een elementje aangrijpen. We zullen hierbij slechts twee bijzondere gevallen behandelen, zie fig. 1a, b:

I $\sigma_{xx} = + \sigma_{yy} = -\sigma$ $\tau_{xy} = \tau_{yx} = 0$ II $\sigma_{xx} = -\sigma_{yy} = -\sigma$ $\tau_{xy} = \tau_{yx} = 0$

In de figuren 2 en 3 zijn beide vlakke spannings-toestanden opgevat als de superpositie van twee lijnspanningstoestanden. Voor belastinggeval 1 blijkt uit fig. 2, dat zowel in *n*- als in *t*-richting de som van beide normaalspanningen weer gelijk is aan σ , terwijl de beide schuifspaningen op elk vlakje elkaar juist opheffen (vergelijk hiertoe de formules [411-(6) en (7)].

Voor alle vlakjes die loodrecht staan op de zijvlakken van het schijfvormige elementje, geldt dus een spanningstoestand die is te vergelijken met de alzijdige spanningstoestand bij gassen of vloeistoffen. Brengen we echter een snede aan die niet loodrecht staat op de genoemde zijvlakken, dan geldt deze regel niet, zie fig. 3.

Fig. 3 Gelijke drukspanningen in x- en y-richting

- a. Spanningen op een elementje
- b. Het schuine vlak (loodrecht op de zijvlakken) ondervindt géén schuifspanningen
- c. Het schuine vlak (niet loodrecht op de zijvlakken) ondervindt wèl schuifspanningen, omdat de resulterende spanning altijd in het middenvlak ligt

- Fig. 2 Vlakke spanningstoestand met gelijke normaalspanningen in x- en y-richting, bepaald door superpositie
- a. Lijnspanningstoestand in x-richting (druk)
- b. Lijnspanningstoestand in y-richting (druk)
- c. Superpositie van beide lijnspanningstoestanden

□ Voor belastinggeval II waarbij de spanningen op onderling loodrechte vlakjes gelijk en tegengesteld van teken zijn, zullen we alleen maar de spanningstoestand onder 45° met de *x*en *y*-richting beschouwen. Uit fig. 4 blijkt dat in deze vlakken alleen maar schuifspanningen werken en dat de normaalspanningen gelijk moeten zijn aan nul.

Als we omgekeerd in x- en y-richting alleen maar schuifspanningen laten aangrijpen, zullen onder 45° in de éne richting alleen trekspanningen optreden en in de andere richting alleen drukspanningen, zie fig. 5a, b.

Met behulp van de evenwichtsbeschouwing in fig. 5b is een en ander gemakkelijk na te gaan. We denken het elementje daartoe verdeeld in evenwijdige moten in u-en v-richting en ontbinden elk schuifspanningskrachtje langs de rand ook in deze richtingen. Alle evenwijdige moten ondervinden dan dezelfde trekkracht of drukkracht.

We zullen later zien dat dit soort spannings-toestanden in liggers optreedt juist ter plaatse van de neutrale lijn en dat bij betonnen liggers de richting van de scheuren loodrecht staat op de richting van deze trekspanningen.

Fig. 4

Vlakke spanningstoestand met gelijke maar tegengesteld gerichte spanningen in x- en yrichting, bepaald door superpositie

- a. Lijnspanningstoestand in x-richting (druk)
- b. Lijnspannningstoestand in y-richting (trek)
- c. Superpositie van a. en b.
- NB De spanningen zijn op een afwijkende schaal weergegeven t.o.v. fig. 2

Fig. 5

Vlakke spanningstoestand met alleen maar schuifspanningen in *x*- en *y*-richting

- a. Element in moten verdeeld in de *u*- en *v*-richting
- b. Ontbinden van schuifspanningskrachtjes in u- en v-richting levert even grote druk- en trekspanningen in moten onder 45° .

$$\sigma = \pm \frac{\frac{1}{2} \tau \sqrt{2} \Delta a}{\frac{1}{2} \sqrt{2} \Delta a} = \pm \tau$$

19.3.3 VERVORMINGEN BIJ EEN LIJNSPANNINGSTOESTAND *RECAPITULATIE*

De vervormingen die ontstaan bij zuivere trek of druk van een prismatische staaf, zijn behandeld in KW-0 [094-096], zie fig. 1. De *rek* ε (epsilon) wordt gedefiniëerd als:

$$\varepsilon = \frac{l_2 - l_1}{l_1} = \frac{\Delta l_1}{l_1} \tag{8}$$

De rek is gelijk aan de toename van de lengte, gedeeld door de oorspronkelijke lengte. De rek is dus een dimensieloze grootheid.

De dwarscontractie-coëfficiënt v (nu) geeft de verhouding aan tussen de (negatieve) dwarsrek en de (positieve) langsrek, zie ook KW-0 [096].

$$v = -\frac{\Delta b_1 / b_1}{\Delta l_1 / l_1}$$

Wet van Hooke

De spanning is recht evenredig met de langsrek. De evenredigheidsconstante wordt de elasticiteitsmodulus E genoemd (de dwarsrek wordt spanningsloos verondersteld).

$$\sigma = E * \varepsilon \tag{9}$$

Aangezien de rek dimensieloos is, heeft de E dezelfde dimensie als een spanning (N/mm²).

Spannings-rek-diagram

In werkelijkheid is het verband tussen spanning en rek alleen maar lineair zolang de spanningen niet te groot worden (zie KW-0, fig. [094-1]). Bij de *lineaire elasticiteitstheorie* wordt echter uitgegaan van een volkomen rechtlijnig diagram volgens fig. 2. Het materiaalgedrag komt dan alleen tot uiting in de numerieke waarde van de elasticiteits-modulus E en eventueel (op een bescheiden wijze) in de waarde van de contractiecoëfficiënt v (zie KW-0 [095]).

Fig. 1 Definitie van rek

Fig. 2 Verband tussen spanning en vervorming bij een lineair elastisch materiaal

Verlenging en verkorting van staven

De verlenging van een staaf (bij trek) of de verkorting (bij druk) vindt men door in (9) de volgende waarden te substitueren:

 $\sigma = F/A$ en $\varepsilon = \Delta l/l$. Hieruit volgt:

$$\Delta l = \frac{F l}{EA} \tag{10}$$

De factor *EA* wordt hierbij aangeduid als de *rekstijfheid*. De spanningsloze dwarsvervormingen (bij zo'n trek- of drukproef) treden op in y- en z-richting. Ze worden bij lineaire constructie-onderdelen meestal buiten beschouwing gelaten.

In KW-7 wordt aangegeven hoe op vrij eenvoudige wijze ook plastische verschijnselen in de berekening kunnen worden verdisconteerd.

Fig. 3 Blok opgehangen aan drie kabels

Voorbeeld 1 Blok aan drie kabels

Een blok beton is opgehangen aan drie even dikke staalkabels van 3,50 m lengte, zie fig. 3. Afmetingen blok: $b \times l \times h = 1 \times 2 \times 0,6 \text{ m}^3$ Volume blok: $V = 1,2 \text{ m}^3$ Het gewicht van het blok bedraagt: $F_g = V * \gamma = 1,2 \times 24 = 28,8 \text{ kN}$ De grootte van de krachten in de kabels is gelijk aan: $F_1 = 0,5 F_g$, $F_2 = F_3 = 0,25 F_g$ (zie KW-0 [044]) De krachten in de staaldraden bedragen dan: $F_1 = 14,4 \text{ kN}, F_2 = F_3 = 7,2 \text{ kN}$

Elke staaldraad heeft een doorsnede van 50 mm² De normaalspanningen in de draden bedragen dan: $\sigma_1 = F_1 / A = 14400 \text{ N} / 50 \text{ mm}^2 =$ = 288 N/mm² $\sigma_2 = \sigma_3 = 144 \text{ N/mm}^2$

De staaldraden worden geacht te bezwijken bij een spanning van 500 N/mm². Voor het beschreven geval mogen de werkelijk optredende spanningen hoogsten 75 % van deze waarde bedragen (375 N/mm²).

Bij alle draden blijven we ruim binnen deze marge.

De verlenging van draad 1 is gelijk aan:

$$\Delta l_1 = \frac{F_1 l}{EA} = \frac{14\,400 * 3500}{210\,000 * 50} = 4.8 \text{ mm}$$

De verlenging van de twee andere draden bedraagt elk de helft van deze waarde: $\Delta l_2 = \Delta l_3 = 2,4$ mm. Bij een exact gelijke lengte van de drie staaldraden gaat het blok dus licht scheef hangen (2,4 mm over 1,5 m).

Als we de kabels 2 en 3 elk een doorsnede van 25 mm geven, zijn de spanningen in de drie kabels weer gelijk, dus ook de verlengingen. Het blok hangt dan weer recht.

Eigen gewicht:

We beschouwen een kolom met een doorsnede: $d \times d = 400 \times 400 \text{ mm}^2$ en een hoogte h = 3,00 m

$$\Delta h = \int_{0}^{h} \frac{F_{x} \, dx}{EA} = \int_{0}^{h} \frac{d^{2} * x \gamma \, dx}{E \, d^{2}} = \frac{\gamma}{E} \int_{0}^{h} x \, dx$$
$$\Delta h = \left[\frac{\gamma x^{2}}{2E}\right]_{0}^{h} = \frac{\gamma h^{2}}{2E}$$

Controleer bij een dergelijke oplossing eerst of de dimensie van de formule klopt (de zakking zal een lengtemaat moeten zijn) en ga zorgvuldig na of alle eenheden hetzelfde zijn (N en mm).

 $\gamma = 24 \text{ kN/m}^3 = 24 * 10^{-6} \text{ N/mm}^3$

$$h = 3,00 \text{ m} = 3000 \text{ mm}$$

 $E = 30\,000 \text{ N/mm}^2$

De verkorting van de kolom onder eigen gewicht bedraagt:

$$\Delta h = \frac{\gamma h^2}{2E} = \frac{24 * 10^{-6} * 9 * 10^{+6}}{2 * 3 * 10^{+4}} = 36 * 10^{-4} \,\mathrm{mm}$$

Uiteindelijk kan deze verkorting door kruipinvloeden ca. $3 \times zo$ groot worden, maar bedraagt toch maar 1/100 mm.

Uitwendige belasting

Door de belasting van bovenliggende kolommen en vloeren zullen de krachten op kolommen veelal aanmerkelijk groter zijn. Bij een spanning van bijv. 5 N/mm² bedraagt de kracht die door de doorsnede wordt overgebracht: $F_x = 400 * 400 * 5 = 80 * 10^4$ N

De verkorting ten gevolge van deze kracht is gelijk aan:

$$\Delta h = \frac{Fh}{EA} = \frac{8 * 10^5 * 3 * 10^3}{3 * 10^4 * 400 * 400} = 0,5 \text{ mm}$$

In de loop van de tijd kan dit dus door kruipinvloeden toenemen tot 3 * 0.5 = 1.5 mm.

19.3.4 SPANNINGSVERDELING BIJ ZUIVERE TREK OF DRUK

Men spreekt van *zuivere trek* of *zuivere druk*, als de trek- of drukspanningen bij een prismatische staaf volkomen gelijkmatig zijn verdeeld over de normale doorsnede *A* van de staaf, zoals is weergegeven in fig. 1. Men spreekt ook wel van *centrische* trek of druk.

Aangezien de som van de gezamenlijke spanningskrachtjes in de doorsnede gelijk is aan de normaalkracht N ter plaatse, moet de werklijn van de normaalkracht samenvallen met de werklijn van de resultante van de spanningskrachtjes. Hieruit volgt dat de normaalkracht N door het zwaartepunt O van de doorsnede moet gaan, zodat de werklijn van N samenvalt met de aslijn van de staaf, zie ook [429].

De algemene formule luidt dus:

$$\sigma = \frac{N}{A} \tag{2a}$$

Bij trekkrachten behoeft men maar op twee dingen te letten:

- 1. De vervormingen mogen niet te groot worden, zie KW-5.
- 2. De optredende spanningen moeten voldoende ver verwijderd blijven van de breuk- of vloeispanning, zie KW-7.

Bij drukkrachten geldt hetzelfde als voor trekkrachten, maar bovendien is nog een derde verschijnsel van belang:

3. Er mag geen knik optreden, zie fig. 2c en KW-5.

Indien bij centrisch gedrukte staven de normale doorsnede betrekkelijk gering is ten opzichte van de lengte van de staaf, blijkt de staaf boven een bepaalde belasting de krachten behalve door druk, tegelijkertijd ook door buiging over te brengen.

Bij statisch bepaald opgelegde staven is bezwijken dan onafwendbaar, omdat de uitbuiging bij langzaam toenemende belasting plotseling zeer sterk toeneemt, zie fig. 3.

Fig. 1 Spanningsverdeling ten gevolge van een centrische drukkracht Prismatische staaf met een T-vormige dwarsdoorsnede (met oppervlakte A)

- Fig. 2 Twee centrisch belaste drukstaven met dezelfde lengte, maar met verschillende rechthoekige dwarsdoorsneden
- a. Krachten worden uitsluitend overgedragen door normaalkrachten (druk)
- b. Bij kleine drukkrachten treden nog uitsluitend normaalkrachten op
- c. Boven een bepaalde kritische drukkracht wordt deze uitwendige kracht niet alleen overgedragen door een normaalkracht, maar bovendien door buigende momenten

19.3.5 EXCENTRISCH AANGRIJPENDE TREK- OF DRUKKRACHTEN

Indien de normaalkracht niet in het zwaartepunt van de doorsnede aangrijpt, spreken we van excentrisch getrokken of gedrukte staven. In zo'n geval worden tevens buigende momenten in de staaf overgebracht. Dit is gemakkelijk in te zien door de beide normaalkrachten naar het zwaartepunt van de doorsnede te verplaatsen onder invoering van een koppel aan elk staafuiteinde, zie fig. 4 (KW-0; [014]). Beide koppels zorgen er dan voor dat de staaf bovendien ook nog aan een zuiver buigend moment wordt onderworpen.

Vóór het verplaatsen van de uitwendige kracht naar het zwaartepunt, zoals is weergegeven in fig. 4a2, b1, spreken we van een excentrische drukkracht F.

Ná verplaatsing is de drukkracht even groot gebleven, maar nu pas mogen we deze kracht ook als normaalkracht N (= F) betitelen; fig. 4b2.

Ook bij excentrisch gedrukte staven kan knik optreden, de buigvervorming is immers al ingeleid en gaat bij het naderen van de knikkracht zeer sterk toenemen. Maar in hoofdstuk 19 gaan we er vanuit dat de omstandigheden zodanig zijn, dat geen knik kan optreden. Het knikverschijnsel wordt besproken in KW-5.

3

Fig. 3 Knik

Het knikverschijnsel kan gemakkelijk worden gedemonstreerd aan de plastic staafjes die worden gebruikt om de koffie om te roeren. Hoe we ook ons best doen om centrisch te drukken, al snel zal het staafje sterk zijdelings uitbuigen

- Fig. 4 Excentrisch aangrijpende trek- of drukkrachten worden verplaatst naar het zwaartepunt O van de doorsnede en veroorzaken daardoor een koppel op de uiteinden van de staaf
- a. Centrisch en excentrisch gedrukte staaf ruimtelijk weergegeven
- b. Toestand vóór en na na verplaatsen van de excentrische krachten in boven- en zij-aanzicht

19.4.1 VERVORMINGEN BIJ ZUIVERE BUIGING

We spreken van zuivere buiging als het buigend moment over een (deel van een) ligger constant is. De dwarskracht moet over dat deel van de ligger dan gelijk zijn aan nul (KW-2 [269-1]). De meest eenvoudige manier om dit te bereiken is het belasten van een ligger door middel van een zogenaamde vierpuntsbuigproef, volgens het schema van fig. 1a.

Als men de vervormingen van de ligger nauwkeurig observeert, blijkt het middendeel een zuivere cirkelvorm aan te nemen (vergelijk ook het 'verenmodel' in KW-0 van fig. [099-4]). Alle doorsneden loodrecht op de staafas blijven ook na vervormingen loodrecht op de staafas gericht. Dit wordt omschreven met de uitdrukking: 'vlakke doorsneden blijven vlak'.

In eerste instantie beschouwen we een prismatische balk met een rechthoekige doorsnede, zoals is weergegeven in fig. 2a. Na vervorming is de middelste vezel n-n precies even lang gebleven, zie fig. 2b. Hier moet de spanning dus gelijk zijn aan nul. We noemen dit de *neutrale lijn*. Doordat de vezel is gebogen, is de projectie in feite iets korter geworden (vergelijk hiertoe ook KW-0, fig. [099-4]). Maar omdat de werkelijke vervormingen zo klein blijven, houden we hier nooit rekening mee, vergelijk daartoe de figuren 2a en 2b met elkaar.

Zoals reeds werd vermeld, blijven de normale doorsneden ook in de vervormde toestand loodrecht op de cirkelvormige neutrale lijn n-n staan, zie fig. 2b. De vezels boven de neutrale lijn worden dus korter en brengen drukspanningen over, de vezels beneden de neutrale lijn worden langer en brengen dus trekspanningen over.

- Fig. 1 Een vierpuntsbuigproef veroorzaakt een zuiver buigend moment in het middendeel van de ligger
- a. Schema
- b. Dwarskrachtenlijn
- c. Momentenlijn
- d. Doorbuiging (cirkelvorm tussen B en C)

- Fig. 2 Vervormingen bij zuivere buiging
- a. Onbelaste rechthoekige balk met doorsnede
- b. Balkvorm na belasting (sterk overdreven vervormingen)

In fig. 3 is het vervormde balkgedeelte uit fig. 2b nogmaals weergegeven. De begrenzingslijnen aan de linker- en rechterzijde zijn nu doorgetrokken tot ze elkaar in een punt M snijden; het middelpunt van de cirkelbogen. De afstand R van punt M tot de neutrale lijn n-n wordt hierbij aangeduid als de *kromtestraal*.

De lengte van zowel de bovenvezel b-b als van de ondervezel o-o van dit cirkelvormige balkgedeelte kan dan gemakkelijk worden berekend. De hoek φ wordt hierbij weergegeven in radialen.

lengte (b-b): $(R - h/2) * \phi$

lengte (n-n): $R * \varphi$

lengte (o-o): $(R + h/2) * \phi$

De rekken in deze drie vezels volgen dan uit de definitie van rek volgens formule [414-(8)]:

$$\varepsilon_{(b-b)} = \frac{\{(R-h/2) - R\} * \varphi}{R \varphi} = -\frac{h/2}{R}$$
$$\varepsilon_{(n-n)} = \frac{\{R-R\} * \varphi}{R \varphi} = 0$$
$$\varepsilon_{(o-o)} = \frac{\{(R+h/2) - R\} * \varphi}{R \varphi} = +\frac{h/2}{R}$$

De rekken verlopen dus lineair over de hoogte van de balk en zijn omgekeerd evenredig met de grootte van de kromtestraal R.

Fig. 3 Bepaling van de vervormingen bij een moot van een balk die is onderworpen aan een constant buigend moment, waardoor de balk een cirkelvorm aanneemt

19.4.2 SPANNINGSVERDELING IN EEN RECHTHOEKIGE DOORSNEDE

Als de rekken lineair over de hoogte verlopen, volgt uit formule [414-(9)], dat ook de spanningen lineair over de hoogte moeten verlopen, zoals is weergegeven in fig. 1a.

Ook bij zuivere buiging van een ligger of staaf hebben we te maken met een lijnspanningstoestand; alle resulterende spanningen zijn weer evenwijdig aan één lijn: de staafas [410].

De grootte van de spanningen kan worden bepaald uit de voorwaarde dat het koppel dat alle spanningskrachtjes tezamen leveren, gelijk zal moeten zijn aan het buigend moment M.

We beginnen met de eenvoudige afleiding voor een rechthoekige doorsnede (dus met twee symmetrie-assen), op een geheel overeenkomstige manier als bij het verend ondersteunde blok in KW-0 [060-061].

Voor doorsneden, die één of meer symmetrieassen bezitten wordt in [422-426] een formele afleiding gegeven die geldig is voor alle doorsnedevormen. In [443-451] daarentegen wordt een meer visuele methode besproken, die nauw verband houdt met de aanpak in [420-421]. De laatste methode geldt echter alleen voor samengestelde *rechthoekige* doorsneden.

Allereerst bepalen we uit de spanningsfiguur de totale grootte van de resulterende druk- en trekkracht. Deze krachten volgen uit de inhouden van de desbetreffende spanningsfiguren boven en beneden de neutrale lijn n-n, zie fig. 1a,b.

$$F_{\rm d} = F_{\rm t} = \frac{1}{2} \sigma_{\rm max} b \frac{h}{2} = \frac{1}{4} \sigma_{\rm max} b h$$
 (11)

De resulterende druk- en trekkracht gaan door de zwaartepunten van de bijbehorende spanningsfiguren; ze grijpen aan op 1/3 van de halve hoogte vanaf de neutrale lijn, dus op afstanden h/6vanaf de boven- en onderzijde van de doorsnede, zie fig 1b en fig. 2a, b. De afstand tussen beide krachten bedraagt dan $z_0 = 2/3 h$. Deze afstand z_0 wordt de *inwendige hefboomsarm* genoemd.

a. Verloop van de spanningen op een liggermootje

b. Koppel dat door de spanningen wordt geleverd

Beide krachten leveren tezamen een koppel *K*, dat gelijk moet zijn aan het buigend moment *M*, dat door alle spanningskrachtjes tezamen wordt geleverd. We vinden dan met $F_d = F_t = F$ volgens formule (11), zie fig. 2:

$$K = F * \frac{2}{3} h = \frac{1}{4} \sigma_{\max} b h * \frac{2}{3} h =$$
$$= \frac{1}{6} \sigma_{\max} b h^{2}$$
(12)

Aangezien geldt: M = Kvolgt uit formule (12):

$$\sigma_{\max} = \frac{M}{\frac{1}{6} b h^2} = \frac{M}{W}$$
 (13)

De term $1/6 bh^2$ wordt aangeduid als: Weerstandsmoment W.

Het is de grootheid waardoor we het buigend moment M moeten delen om de spanningen in de uiterste vezels te vinden.

De waarde $W = 1/6 bh^2$ geldt alleen voor een rechthoek met zijden b en h, waarbij de spanningen in de b-richting constant blijven en in de h-richting lineair verlopen.

De formules voor de maximale spanning ten gevolge van normaalkracht en buiging hebben nu een vergelijkbare opbouw gekregen:

$$\sigma_{\rm n} = \frac{N}{A} \qquad \sigma_{\rm b} = \frac{M}{W}$$

Beide snedekrachten moeten door hun bijbehorende doorsnede-grootheid worden gedeeld om de maximale spanning te vinden.

a. Spanningsverdeling

b. Grootte van het daaruit volgende koppel (= buigend moment)

Let op:

Voor het weerstandsmoment van een rechthoekige doorsnede is hiernaast de formule $W = 1/6 bh^2$ afgeleid.

Bij samengestelde rechthoekige doorsneden kan het weerstandsmoment *nooit* worden bepaald als de superpositie van de weerstandsmomenten van de afzonderlijke delen.

Dit moet altijd verlopen via het kwadratische oppervlaktemoment volgens de formules [427 - (28)].

Bij de bepaling van zowel lineaire als kwadratische oppervlakte-momenten en ook bij buigende momenten kan het superpostiebeginsel wel worden toegepast. In dit opzicht is het weerstandsmoment maar een bastaardmoment.

19.4.3 ALGEMENE FORMULES VOOR DE VERVORMINGEN

De afleiding is opgezet voor het meest voorkomende geval waarbij een balk in lengterichting een verticaal symmetrievlak bezit en de momentvector loodrecht op dit symmetrievlak staat, zie fig. 1a. Voor het merendeel van de gevallen houdt dit in dat de belasting verticaal is. Als we even afzien van de invloed van de dwarscontractie [414] (en KW-0 [095]), dan treden voor dit geval uitsluitend vervormingen op in vlakken die evenwijdig zijn aan dit symmetrievlak. Daaruit volgt weer dat we kunnen volstaan met het beschouwen van de vervormingen in het symmetrievlak.

Indien de dwarsdoorsnede geen symmetrie-as bezit, wordt het bepalen van de spanningsverdeling een stuk gecompliceerder. Dit valt buiten het kader van KW-4.

Wie echter in bepaalde situaties genoodzaakt is, zich hiermee toch bezig te houden, kan wat meer informatie vinden in paragraaf 19.7 [440-442].

Ter bepaling van de gedachte beschouwen we een prismatische balk die een T-vormige dwarsdoorsnede bezit, zie fig. 1a, b.

De ligging van de neutrale lijn n-n kan nu niet zonder meer worden aangegeven, zoals bij een rechthoekige doorsnede. De neutrale lijn in elke dwarsdoorsnede van de balk zal uit symmetrieoverwegingen echter horizontaal moeten zijn. Bij buiging blijken vlakke doorsneden weer vlak te blijven en onder invloed van een constant buigend moment moet de balk dus weer een cirkelvorm aannemen, zie fig. 2b.

- Fig. 1 Buiging van een T-balk
- a. Balk met een verticaal symmetrievlak, waarvan een moot is onderworpen aan zuiver buigende momenten
- b1 Doorsnede,
- b2 Spanningsverdeling werkend op doorsnede 1 van fig. 1a,
- b3 Zijaanzicht van de balk met ligging van de neutrale lijn n-n

In fig. 2a is een balkgedeelte getekend met een lengte 2a. De neutrale lijn ligt op een (voorlopig nog onbekende) afstand z_b beneden de bovenzijde van de balk. We beschouwen vervolgens een vezel op een afstand z beneden de neutrale lijn n-n. In fig. 2b is het vervormde balkgedeelte getekend, waarbij de vervormingen weer sterk zijn overdreven. Voor de werkelijke kleine vervormingen mag daarom de projectie van de cirkelboog A'-O'-B' worden gelijkgesteld aan de oorspronkelijke lengte A-O-B = 2a, vergelijk hiertoe fig. 2b met fig. 2a.

De lengte van de cirkelboog O'-B' is gelijk aan $R \varphi$; de lengte van de beschouwde vezel is gelijk aan $(R + z) \varphi$, zodat de rek gelijk is aan:

$$\varepsilon(z) = \frac{\Delta a}{a} = \frac{z * \varphi}{R * \varphi} = \frac{z}{R}$$
 (14)

Met de schrijfwijze $\varepsilon(z)$ wordt bedoeld dat het verloop van ε_x wordt beschouwd als functie van de z-richting.

De kromming van de balk – dat wil zeggen; de mate waarin de balk 'rond' gaat staan – wordt gedefinieerd als:

$$\kappa = \frac{\mathrm{d}\varphi}{\mathrm{d}s} \tag{15}$$

Dit is dus de toename van de hoekverdraaiiing van het beschouwde balkgedeelte, gedeeld door de lengte van de neutrale lijn van het (gebogen) balkgedeelte. Voor de halve balkmoot die is weergegeven in fig. 2b geldt dus dat de kromming κ (kappa) exact gelijk is aan:

$$\kappa = \frac{\varphi}{R * \varphi} = \frac{1}{R} \tag{16}$$

De kromming κ is dus gelijk aan de reciproke waarde van de kromtestraal R.

Aan de hand van de vervormingen kunnen de optredende spanningen in de doorsnede worden bepaald. In [424] wordt onderzocht aan welke voorwaarden moet worden voldaan, om te zorgen dat de doorsnede geen normaalkracht overbrengt maar alleen een zuiver buigend moment.

Fig. 2 Vervorming van een balkmoot ter lengte 2*a* bij zuivere buiging

Zij-aanzicht onvervormde moot; de afstand zwordt gemeten vanaf de neutrale lijn; maar de ligging hiervan moet nog worden bepaald

Zijaanzicht van de vervormde balkmoot met de grootte van de kromtestraal *R*

a.

b.

19.4.4 EVENWICHTSVOORWAARDEN

Normaalkracht

Indien alleen een zuiver buigend moment op een doorsnede werkt, moet de resultante van alle spanningskrachtjes gelijk zijn aan nul. Dit levert de voorwaarde, zie fig. 1:

$$N = \int \sigma \, \mathrm{d}A = 0 \tag{17}$$

De grootheid A bij het integraalteken betekent dat over het gehele oppervlak A moet worden geïntegreerd.

In formule (17) vervangen we nu eerst de spanning door de rek volgens formule (9): $\sigma = E \varepsilon$ Vervolgens substitueren we de rek ε weer vanuit de geometrische betrekking [423-(14)]. Dit levert:

$$\int_{a}^{A} E \varepsilon(z) \, dA = \int_{a}^{A} E \frac{z}{R} \, dA = 0 \qquad (17a)$$

Aangezien de grootheden E en R constant zijn en alleen z maar als onafhankelijk variabele voorkomt, kunnen de eerste twee grootheden vóór het integraalteken worden gebracht. Uit (17a) volgt dan als eerste voorwaarde bij zuivere buiging:

$$\int_{a}^{A} z \, \mathrm{d}A = 0 \tag{18}$$

Deze integraal wordt gedefiniëerd als: lineair oppervlaktemoment van de doorsnede en weergegeven door het symbool S.

$$\int_{-\infty}^{A} z \, \mathrm{d}A = S \tag{19}$$

In [429] zal blijken dat voorwaarde: S = 0 inhoudt dat de neutrale lijn n-n door het zwaartepunt van de doorsnede gaat.

Fig. 1 Spanningsverloop over de doorsnede voor:

- de bepaling van de normaalkracht N
 - de bepaling van het buigend moment M om de neutrale lijn n-n
- NB De optredende spanningen en rekken in de normale doorsnede hebben allemaal betrekking op de x-richting: σ_x , ε_x

Fig. 2 Controle of er een buigend moment om de z-as optreedt

Buigend moment om de y-as

Als tweede voorwaarde kunnen we invoeren dat het statisch moment dat door alle spanningskrachtjes gezamenlijk wordt geleverd, gelijk moet zijn aan het buigende moment dat de doorsnede moet overbrengen.

$$M_{y} = \int \sigma \, \mathrm{d}A \ z \tag{20}$$

Op dezelfde wijze als in formule (17) substitueren we weer de formules (9) en (14).

We vinden dan achtereenvolgens:

$$M_{y} = \int_{A}^{A} \sigma * z \, dA = \int_{A}^{A} E \varepsilon(z) * z \, dA =$$
$$= \int_{A}^{A} E \frac{z}{R} z \, dA = \frac{E}{R} \int_{A}^{A} z^{2} \, dA \quad (20a)$$

Als *kwadratisch oppervlaktemoment* I_y van de doorsnede om de y-as wordt nu gedefiniëerd:

$$\int_{y}^{A} z^{2} dA = I_{y}$$
(21)

De grootheid I zal in principe voor iedere doorsnedevorm apart moeten worden berekend.

Regels om dit te doen worden verstrekt in [432 t/m 439]. In de hierna volgende formules zijn de indices, die aangegeven om welke as het moment wordt opgemaakt, veelal weggelaten als de tekst voor zichzelf spreekt. Substitutie van formule (21) (zonder index y) in (20a) levert:

$$M = \frac{EI}{R} \tag{22}$$

De term *EI* wordt als *buigstijfheid* aangeduid, ze komt voor in alle doorbuigingsformules van liggers in KW-5.

In de bovenstaande vorm is er met de buigingsformule nog niet zo veel te beginnen, daartoe wordt ze in [426] in een gemakkelijker te hanteren vorm gebracht.

Buigend moment om de z-as

Als controle zullen we vervolgens nagaan of het statisch moment dat door alle spanningskrachtjes om de z-as wordt geleverd, inderdaad gelijk is aan nul, zoals we bij dit symmetrische profiel mogen verwachten. Hoewel dit in eerste instantie een triviale bezigheid lijkt, volgt hieruit toch een belangrijk gegeven.

De genoemde voorwaarde luidt, zie fig. 2:

$$M_{z} = \int_{A}^{A} \sigma * y \, dA = \int_{A}^{A} E \varepsilon(z) * y \, dA =$$
$$= \int_{A}^{A} E \frac{z}{R} y \, dA = \frac{E}{R} \int_{A}^{A} y z \, dA \quad (23)$$

We definiëren nu als het oppervlakte product:

$$\int_{yz}^{A} y z \, \mathrm{d}A = I_{yz} \tag{24}$$

Het moment om de z-as kan dus alleen maar nul zijn als het oppervlakteproduct $I_{yz} = 0$.

Uit fig. 2 blijkt dat dit bij doorsneden met minstens één symmetrie-as altijd het geval is. Elk aandeel van een oppervlakte-deeltje links van de symmetrie-as valt immers weg tegen het symmetrische oppervlaktedeeltje rechts van de symmetrie-as.

Maar dit houdt tegelijkertijd ook het volgende in. Als we de doorsnede in de getekende stand aan een uitwendig buigend moment M_z onderwerpen, dan zal de neutrale lijn nu samenvallen met de z-as, omdat nog steeds geldt dat $I_{yz} = 0$. Dit is weergegeven in fig. [426-2].

We noemen de y- en z-as de *hoofdassen* van de doorsnede omdat een belasting in z-richting alleen een doorbuiging in z-richting veroorzaaktmet een neutrale lijn in y-richting.

Voor de *y*-richting geldt een soortgelijk resultaat: een belasting in *y*-richting veroorzaakt alleen een doorbuiging in *y*-richting met een neutrale lijn in *z*-richting.

19.4.5 SPANNINGSVERDELING

De spanning in een punt van de doorsnede volgt – evenals in [424] – door achtereenvolgens de formules (9) en (14) te gebruiken, zie fig. 1:

$$\sigma = E \varepsilon(z) = E \frac{z}{R}$$
(25)

In deze formule kunnen we de kromtestraal R weer elimineren door substitutie van formule [425-(22)]. We vinden dan:

$$\sigma = \frac{Mz}{I} \tag{26}$$

Formule (26) is een van de meest belangrijke formules in de toegepaste mechanica. Hieruit blijkt dat voor de normaalspanningen bij zuivere buiging het volgende geldt:

- de spanningen zijn recht evenredig met het buigende moment M,
- de spanningen zijn recht evenredig met de afstand tot de neutrale lijn,
- de spanningen zijn omgekeerd evenredig met het kwadratisch oppervlaktemoment.

De elasticiteitsmodulus E heeft dus geen invloed op de spanningsverdeling, maar heeft wel invloed op de grootte van de vervorming, in dit geval dus de kromming. Volgens formule (16) geldt immers:

$$\kappa = \frac{1}{R} = \frac{M}{EI} \tag{27}$$

De kromming is recht evenredig met het buigend moment M en omgekeerd evenredig met de buigstijfheid EI.

Zowel bij zuivere trek of druk als bij zuivere buiging ontstaan in de normale doorsnede alleen *normaalspanningen*, volgens de definitie van [408].

In het *spraakgebruik* worden de normaalspanningen ten gevolge van de normaalkracht *N* altijd als *normaalspanningen* aangeduid, maar de normaalspanningen ten gevolge van het buigende moment *M* meestal als *buigspanningen*.

Fig. 1 Spanningsverdeling in een normale doorsnede van een T-balk ten gevolge van M_y $\sigma_x = M_y * z / I_y$

Fig. 2 Spanningsverdeling in een normale doorsnede van een T-balk ten gevolge van M_z $\sigma_x = M_z * y / I_z$

19.4.6 WEERSTANDSMOMENT

Het verloop van de normaalspanningen (buigspanningen) over de hoogte van de dwarsdoorsnede is direct te tekenen als de spanningen in de boven- en ondervezel zijn bepaald. Deze spanningen worden benut om de benodigde vorm en afmetingen van een doorsnede vast te stellen zodra de grootte van het buigend moment M bekend is. Hiertoe worden twee nieuwe grootheden ingevoerd, zie fig. 3:

de weerstandsmomenten W_{boven} en W_{onder} volgens onderstaande formules:

$$\sigma_{\rm b} = + \frac{Mz_{\rm b}}{I} = \frac{M}{\frac{I}{z_{\rm b}}} = -\frac{M}{W_{\rm b}} \qquad (28a)$$
$$\sigma_{\rm o} = + \frac{Mz_{\rm o}}{I} = \frac{M}{\frac{I}{z_{\rm o}}} = + \frac{M}{W_{\rm o}} \qquad (28b)$$

Bij een positief moment treden aan de bovenzijde drukspanningen op, dit volgt automatisch uit de tweede term van formule (28a), omdat de afstand z_b als een negatieve waarde moet worden ingevoerd. Evenzo treden aan de onderzijde trekspanningen op, die eveneens rechtstreeks uit de tweede term van formule (28b) volgen, omdat de afstand z_o nu als een positieve waarde moet worden ingevoerd.

De grootheden W_0 en W_b worden altijd als positieve grootheden beschouwd; bij toepassing van de formules voor het weerstandmoment moet men dus altijd even nagaan of men met druk- of trekspanningen te doen heeft.

Er wordt met nadruk op gewezen, dat formule (26) de algemeen geldige formule is waarmee in elk punt van de doorsnede de buigspanningen kunnen worden bepaald en dat de weerstandsmomenten alléén betrekking hebben op de spanningen in de uiterste vezels van de doorsnede.

Fig. 3 Bepaling van de spanningen in de uiterste vezels met behulp van weerstandsmomenten

19.4.7 BEPALING VAN DE BENODIGDE DOORSNEDE

Bij het ontwerpen is de overspanning van de ligger bekend evenals de globale grootte van de maximale belasting die op de ligger kan werken. Hieruit volgt dan weer het maximale moment waarop de ligger moet worden berekend volgens de voorschriften. Ook de rekenwaarde voor de sterkte (= de numerieke waarde voor de spanning die wordt aangehouden in het bezwijkstadium) kan aan de voorschriften worden ontleend. Met behulp van de formules (28) kunnen dan de benodigde afmetingen worden bepaald.

Voorbeeld: houten balkvloer met overspanning l = 5 m en een balkafstand b = 0.6 m. De belasting in het bezwijkstadium bedraagt p = 3 kN/m².

Rekenwaarde voor de buigsterkte (hout):
$$f = 10 \text{ N/mm}^2$$
.
 $M_{\text{max}} = \frac{1}{8} ql^2 = \frac{1}{8} p b l^2 = \frac{1}{8} 3 * 0, 6 * 5^2 =$

$$= 5,625 \text{ kNm} = 5625 * 10^{\circ} \text{ Nmm}$$

De balkdoorsnede is rechthoekig: $b \times h$ zodat geldt: $W = 1/6 * bh^2$. Uit (28) volgt dan als vereist weerstandsmoment: $W = M/f = 5625 * 10^3/10 = 562500 \text{ mm}^3$. Bij een gegeven balkbreedte b (gekozen als b = 75 mm) volgt de benodigde hoogte h uit:

$$h = \sqrt{6W/b} = \sqrt{6*562500/75} = 212 \text{ mm}$$

De handelsmaten voor h variëren van 100 tot 225 mm, opklimmend met 25 mm; alleen h = 225 mm voldoet.
19.5.1 ALGEMEEN

Om de normaalspanningen in een normale doorsnede te kunnen berekenen, is in 19.3 en 19.4 gebruik gemaakt van de volgende doorsnedegrootheden: A - S - I - W.

Bij deze berekeningen wordt consequent het volgende assenkruis toegepast, zie fig. 1a:

- langs de staafas x-as:
- ìn het vlak van de normale doorsnede, y-as: liefst horizontaal
- ìn het vlak van de normale doorsnede, z-as: liefst verticaal

Let op; bij gebruik van tabellenboeken kunnen andere assenkruisen zijn toegepast !

In onderstaand overzicht zijn – evenals in 19.4 – de grootheden S - I - W bepaald om de y-as, zodat in z-richting wordt geïntegreerd.

Bepaalt men de grootheden om de z-as, dan moet in y-richting worden geïntegreerd. In de hierna volgende formules dienen dan de y- en z-coördinaat te worden verwisseld.

	A
Oppervlakte:	$A = \int dA$
Lineair oppervlaktemoment	$S_y = \int_y^A z dA$
Kwadratisch oppervlaktemoment	$I_{y} = \int_{-\infty}^{A} z^{2} dA$
Weerstandsmoment:	$W_{\rm b} = I_y / z_{\rm b}$
	$W_{\rm o} = I_y / z_{\rm o}$

Hierboven is de terminologie gebruikt volgens NEN 6701 (KW-0 [070]). In de praktijk wordt echter nog veelvuldig gebruik gemaakt van de vroegere kortere benamingen:

- S = Statisch moment
- I = Traagheidsmoment

In principe kan een willekeurig gevormde doorsnede in rechthoekige moten worden verdeeld, en kunnen A, S en I worden bepaald vanuit de sommatie van deze moten, zie fig. 1b.

Fig. 1 Prismatische staaf

a. Assenkruis

b. Doorsnede vervangen door rechthoekige moten

De meeste doorsnedevormen kunnen echter eenvoudiger worden berekend als de som of het verschil van enkele rechthoeken, driehoeken of cirkels, zie fig. 2.

In 19.5 [432-439]zijn alle doorsnede-grootheden op zuiver formele weg afgeleid, waarbij we ons beperken tot rechthoeken, driehoeken en cirkels. Aangezien veel studenten zich maar moeilijk een voorstelling kunnen maken van het kwadratisch oppervlaktemoment, is een meer tot de verbeelding sprekende afleiding gegeven in 19.8 [443-451], die alleen geldt voor doorsnede-vormen die uit rechthoeken zijn samengesteld.

19.5.2 LINEAIR OPPERVLAKTEMOMENT EN ZWAARTEPUNT

We beschouwen een dwarsdoorsnede van willekeurige vorm, waarvan we het zwaartepunt willen bepalen, zie fig. 1a. Daartoe brengen we eerst een willekeurig hulp-assenkruis y'-z' aan.

We beschouwen vervolgens een oppervlakteelementje dA en maken hiervan het statisch moment op om de z'-as.

Dit is dus het product van het oppervlakje dA en de afstand y' tot de z'-as. Het statisch moment van het gehele oppervlak wordt aangeduid als het *lineaire oppervlaktemoment* $S_{z'}$

$$S_{z'} = \int_{a}^{A} y' \, \mathrm{d}A \tag{29}$$

Als het gehele oppervlak rechts van de z'-as ligt, zijn alle bijdragen aan het lineaire oppervlaktemoment positief; ligt ook een gedeelte links van de z'-as, dan is de bijdrage daarvan negatief.

We denken ons het oppervlak A nu in één punt geconcentreerd en gaan na op welke afstand dit punt vanaf de z'-as moet zijn gelegen, om hetzelfde lineaire oppervlakte-moment te verkrijgen als zojuist in (29) is berekend. Als we deze afstand gelijk stellen aan y'_0 , moet dus gelden: $A * y'_0 = S_{z'}$. Hieruit volgt, zie fig. 1b:

$$y'_{0} = \frac{S_{z'}}{A}$$
 (30a)

De lijn evenwijdig aan de z'-as, maar op een afstand y'_0 daarvan verwijderd, wordt aangeduid als een *zwaartelijn* van de doorsnede. Deze lijn zullen we vervolgens beschouwen als de 'echte' z-as (die zonder accent wordt aangegeven).

Op overeenkomstige wijze ligt er een tweede zwaartelijn op een afstand z'_0 vanaf de y'-as, waarvan de afstand volgt uit :

$$z'_{0} = \frac{S_{y'}}{A}$$
 (30b)

Het snijpunt O van de twee zwaartelijnen wordt het zwaartepunt van de doorsnede genoemd. Alle zwaartelijnen van een doorsnede gaan door hetzelfde punt; het zwaartepunt O.

- Fig. 1 Bepaling van het lineaire oppervlaktemoment a. Invoering van een hulpassenkruis y'- z'
- b. Bepaling van het zwaartepunt O van de doorsnede (= oorsprong y-z-assenkruis)

Als we proefondervindelijk het zwaartepunt van een doorsnede willen bepalen, kunnen we een plak karton met de vorm van de doorsnede laten balanceren op de smalle kant van een lineaal, zie fig. 4. Deze evenwichtsstand van de lineaal geeft dan één van de oneindig vele zwaartelijnen weer. Als we dit herhalen voor een andere stand van de doorsnede dan geeft het snijpunt van beide zwaartelijnen het zwaartepunt aan.

Fig. 4 Het visualiseren van een zwaartelijn van een willekeurige doorsnede

19.5.3 KWADRATISCH OPPERVLAKTE-MOMENT ALS FUNCTIE VAN DE AFSTAND TOT DE AS

We gaan uit van een willekeurige doorsnede, waarvan de ligging van het zwaartepunt bekend is. Er wordt nu een y-z-assenkruis aangebracht, met dit zwaartepunt O als oorsprong, zie fig. 1. Voorts wordt een tweede assenkruis y'-z' met oorsprong O' aangebracht. Hierbij geldt:

$$y' = y + y'_0$$

$$z' = z + z'_0$$

Het kwadratisch oppervlaktemoment om de y'-as is dan gelijk aan:

$$I_{y'} = \int_{a}^{A} z'^{2} dA = \int_{a}^{A} (z + z'_{0})^{2} dA =$$
$$= \int_{a}^{A} z^{2} dA + 2z'_{0} \int_{a}^{A} z dA + z'_{0}^{2} \int_{a}^{A} dA$$
(31a)

De eerste term achter het laatste gelijkteken wordt aangeduid als: het *eigen* kwadratisch oppervlaktemoment I_y van de doorsnede; dat wil zeggen: t.o.v. een as door het zwaartepunt.

De integraal van de tweede term is gelijk aan het lineaire oppervlakte-moment S_y om een zwaartelijn en is dus gelijk aan nul. De integraal van de derde term geeft het oppervlak van de doorsnede weer. Formule (31a) kan dan ook als volgt worden geschreven:

$$I_{y'} = I_y + {z'_0}^2 A (31)$$

Formule (31) wordt aangeduid als: *de Regel van Steiner*.

Het kwadratisch oppervlaktemoment om een willekeurige as is gelijk aan het (*eigen*) kwadratisch oppervlakte-moment om een evenwijdige as door het zwaartepunt, vermeerderd met het product van het oppervlak van de doorsnede en het kwadraat van de afstand tussen de assen. De regel wordt veel gebruikt om het kwadratisch oppervlaktemoment van samengestelde doorsneden te bepalen.

$$\begin{aligned} I_{y'z'} &= \int_{A}^{A} y' z' \, dA = \\ &= \int_{A}^{A} (y + y'_0) (z + z'_0) \, dA = \\ &= \int_{A}^{A} y \, z \, dA + z'_0 \int_{A}^{A} y \, dA + y'_0 \int_{A}^{A} z \, dA + \\ &+ y'_0 z'_0 \int_{A}^{A} dA \end{aligned}$$
(32a)

De eerste integraal op de derde regel is gelijk aan het oppervlakteproduct om het y-z-assenkruis door het zwaartepunt, de tweede en derde integraal zijn gelijk aan de lineaire oppervlaktemomenten om de y-as en de z-as. Beide integralen zijn weer gelijk aan nul.

De vierde integraal op de vierde regel is gelijk aan het oppervlak van de doorsnede. Uiteindelijk blijft er dus over:

(32)

$$I_{y'z'} = I_{yz} + y'_0 z'_0 A$$

Het oppervlakteproduct is alleen maar van belang bij asymmetrische doorsneden [440-442], want bij symmetrische doorsneden is het *eigen* oppervlakteproduct altijd gelijk aan nul.

19.5.4 BEREKENING MET BEHULP VAN INTEGRAALREKENING

De meest voorkomende doorsneden kunnen opgebouwd worden gedacht uit rechthoeken, driehoeken en cirkels. Hoewel een ieder de oppervlakken en zwaartepunten van deze meetkundige figuren zo wel kan opschrijven, zullen ze hier ter wille van de uniformiteit toch met behulp van bepaalde integralen worden berekend. Voor de bepaling van de kwadratische oppervlaktemomenten blijkt het namelijk wèl nodig te zijn om integraalrekening toe te passen. In alle gevallen wordt uitgegaan van het oppervlak van een smal mootje, dat vervolgens wordt geïntegreerd tussen de uiterste grenzen.

Vrijwel elke dwarsdoorsnede van een lijnvormig element kunnen we opbouwen uit een aantal rechthoeken en driehoeken, zie fig. [428-1 en 2]. Voor de verdere berekeningen is het zaak om een zodanige onderverdeling te kiezen dat de berekening zo eenvoudig mogelijk wordt, zie bijv. [437-439]. Hoewel bij deze afleidingen strikt met positieve en negatieve asrichtingen moet worden gewerkt, is dit in een verdere fase van de spanningsberekeningen dikwijls maar een moeizame aangelegenheid. Daartoe wordt in de hiernaast liggende kolom op de betrekkelijkheid van dergelijke afspraken ingegaan en worden voorstellen gedaan om met zo eenvoudig mogelijke middelen toch de juiste uitkomsten te kunnen bepalen.

Betrekkelijkheid van tekenafspraken

Vrijwel de gehele berekening van lineaire constructie-onderdelen speelt zich af in een verticaal plat vlak voor verticale belastingen en in een horizontaal plat vlak voor horizontale belastingen. Als basisformule voor de spanningsberekening ten gevolge van een centrische normaalkracht gelden [410-(2)] dan wel [416-(2a)]. Voor buiging geldt de basisformule [426-(26)].

In bovenstaande formules kunnen de volgende snedekrachten voorkomen: een kracht F c.q. een normaalkracht N, en een buigend moment M. Al deze grootheden zijn voorzien van een teken, en in [452-454] zijn daarover tekenafspraken gemaakt. Ter wille van een zekere uniformiteit hebben deze afspraken hun nut, maar overschat hun betekenis niet !

Het enige werkelijk belangrijke is of een lijnvormig constructie-onderdeel onder trek of druk staat en wat de draairichting is van de daarop werkende momenten (dit volgt direct uit het buigteken van de momentenlijn).

Uit deze gegevens volgt éénduidig het teken van de spanningen, waarbij we trekspanningen altijd met een positief teken zullen invoeren en drukspanningen altijd met een negatief teken.

Ook de richting van de momentvectoren ligt éénduidig vast, onverschillig of we daaraan wel of geen teken hebben toegekend.

Bij ingewikkelder gevallen kan het nodig zijn om kracht- of moment-vectoren samen te stellen of te ontbinden, maar ook dit levert altijd eenduidige resultaten.

Bij tekeningen van een doorsnede met in hetzelfde vlak een momentvector, denken we ons deze vector werkend op de achterliggende doorsnede, zodat gemakkelijk kan worden nagegaan waar trekspanningen en waar drukspanningen zullen optreden. De afstand vanaf de neutrale lijn behoeven we dan geen teken meer te geven.

19.5.5 RECHTHOEK

In fig. 1a is een rechthoek weergegeven, waarbij de assen van het assenkruis samenvallen met twee zijranden van de rechthoek. In de rechthoek wordt een smal mootje beschouwd ter breedte ben hoogte dz. Voor de bepaling van het oppervlak moeten we dus in z-richting integreren.

Oppervlak

$$A = \int_{0}^{h} b \, \mathrm{d}z = \left[b \, z \right]_{0}^{h} = b \, h$$

Lineair oppervlaktemoment

Het lineaire-oppervlakte-moment (= statisch moment) wordt opgemaakt om de y-as van fig. 1a en is gelijk aan:

$$S_{y} = \int_{0}^{h} z \ b \ dz = \left[\frac{1}{2} \ b \ z^{2}\right]_{0}^{h} = \frac{1}{2} \ b \ h^{2}$$

Ligging zwaartepunt

De ligging van het zwaartepunt volgt dan uit:

$$z_0 = \frac{S_y}{A} = \frac{\frac{1}{2}bh^2}{bh} = \frac{h}{2}$$

Op overeenkomstige wijze ligt er een tweede zwaartelijn evenwijdig aan de z-as, op een afstand $y_0 = b/2$ vanaf de z- as, zie fig. 1a. Beide zwaartelijnen tezamen vormen het verschoven assenkruis van fig. 1b.

Kwadratisch oppervlaktemoment

Voor de bepaling van de buigspanningen moeten we het kwadratisch oppervlaktemoment opmakent om een as door het zwaartepunt O.

Het bijbehorende assenkruis y-O-z is weergegeven in fig. 1b. Het kan soms gemakkelijker zijn om de assen te laten samenvallen met de zijranden van de doorsnede, zoals in fig. 1a. Zolang we de assenkruisen van fig. 1a, b niet gelijktijdig gebruiken, zullen we ook het hulpassenkruis van fig. 1a met y-z aangeven, dus zonder indices. Maar we zullen het kwadratisch oppervlaktemoment dat op zo'n hulpassenkruis betrekking heeft, wel aangeven met I'.

Fig. 1 Rechthoekige doorsnede met assenkruis a. Assenkruis langs de zijranden

b. Assenkruis door het zwaartepunt

Gemakshalve maken we het kwadratisch oppervlakte-moment eerst op om de bovenrand. We vinden dan de volgende waarde, zie fig. 1a:

$$I'_{y} = \int_{0}^{h} z^{2} * b \, dz = \left[\frac{b \, z^{3}}{3}\right]_{0}^{h} = \frac{1}{3} \, b \, h^{3}$$
(33a)

Als we het kwadratisch oppervlakte-moment opmaken om de neutrale lijn, moeten we integreren tussen -h/2 en +h/2. In dit geval volgt, zie fig. 1b:

$$I_{y} = \left[\frac{bz^{3}}{3}\right]_{-h/2}^{+h/2} = \frac{1}{24} bh^{3} - \frac{1}{24} bh^{3} =$$
$$= \frac{1}{12} bh^{3}$$
(33b)

Het aandeel dat de doorsnede boven de neutrale lijn levert is even groot als het aandeel beneden de neutrale lijn. Beide aandelen moeten positief in rekening worden ge-

bracht. Dit volgt uit het feit dat de term z^2 dA altijd positief is.

Zoals reeds eerder is vermeld, spreekt men van het *eigen* kwadratisch oppervlaktemoment, als het wordt opgemaakt om een zwaartelijn.

Bovenstaande uitkomsten moeten 'in waken en dromen' kunnen worden gereproduceerd! Daartoe zijn deze formules op de nevenstaande bladzijde omrand.

SAMENVATTING

Buiging om de y-as

Kwadratisch oppervlaktemoment, opgemaakt om om de boven- of onderrand, zie fig. 2a:

$$I'_{y} = \frac{1}{3} bh^{3}$$
(33a)

Kwadratisch oppervlaktemoment, opgemaakt om de neutrale lijn, zie fig. 2b:

$$I_y = \frac{1}{12} bh^3$$
 (33b)

Buiging om de z-as

Op overeenkomstige wijze volgen bij buiging om de z-as het traagheidsmoment I'_z om de linker- of rechterzijrand (zie fig. 3a) en het eigen traagheidsmoment I_z om de (verticale) neutrale lijn (zie fig. 3b).

$$I'_{z} = \frac{1}{3} hb^{3}$$
 (34a)
 $I_{z} = \frac{1}{12} hb^{3}$ (34b)

Ter controle van beide uitkomsten passen we de Regel van Steiner toe; uit formule [430-(31)] volgt:

$$I_{y} = I'_{y} - z_{0}^{2} A$$
 (31a)

Voor de rechthoek betekent dit:

$$I_{y} = \frac{1}{3} b h^{3} - \left(\frac{h}{2}\right)^{2} * b h = \left(\frac{4}{12} - \frac{3}{12}\right) b h^{3}$$

hetgeen gelijk is aan de waarde van (33b).

Uit de regel van Steiner volgt dat het eigen kwadratisch oppervlaktemoment om de neutrale lijn kleiner is dan om elke andere daaraan evenwijdige lijn. Als we de neutrale lijn dus niet goed bepalen wordt I te groot in rekening gebracht en dientengevolge de spanning te klein, zie fig. 4.

Fig. 2 Kwadratisch oppervlaktemoment opgemaakt:

a. om de bovenrand

b. om de y-as (neutrale lijn)

Fig. 3 Kwadratisch oppervlaktemoment opgemaakt: a. om een zijrand

b. om de z-as (neutrale lijn)

19.5.6 DRIEHOEK

In fig. 1a is een driehoek weergegeven, met één zijde evenwijdig aan de y-as, terwijl twee hoekpunten van de driehoek op de assen zijn gelegen. Voor de bepaling van het oppervlak wordt geïntegreerd in z-richting.

Oppervlak

$$A = \int_{0}^{h} \frac{z}{h} b \, dz = \left[\frac{b}{h} \frac{z^{2}}{2} \right]_{0}^{h} = \frac{1}{2} b h$$

Lineair oppervlakte-moment

De eenvoudigste manier om het lineaire oppervlaktemoment S te bepalen, is ten opzichte van een as door de top van de driehoek, die evenwijdig loopt aan de basis, volgens fig. 1a.

$$S_{y} = \int_{0}^{h} z * \frac{z}{h} b \, dz = \frac{b}{h} \int_{0}^{h} z^{2} \, dz =$$
$$= \left[\frac{b}{h} \frac{z^{3}}{3} \right]_{0}^{h} = \frac{1}{3} b h^{2}$$

Ligging zwaartepunt

De zwaartepuntsafstand z_0 volgt dan uit, zie fig. 1b:

$$z_0 = \frac{S_0}{A} = \frac{\frac{b h^2}{3}}{\frac{b h}{2}} = \frac{2}{3} h$$

Zoals bekend kunnen we ook de hoekpunten van de driehoek verbinden met de middens van de overstaande zijden, om de drie zwaartelijnen te vinden en bijgevolg ook het zwaartepunt van de driehoek, zie fig. 2.

Fig. 2 Grafische bepaling van het zwaartepunt van een driehoek

Fig. 1 Driehoekige doorsnede

- a. Horizontale as door de top van de driehoek
- b. Horizontale as door het zwaartepunt
- c. Assenkruis door de top van de driehoek voor de bepaling van het oppervlakte-product

Kwadratisch oppervlakte-moment van een driehoek

Het kwadratisch oppervlaktemoment van een driehoek kan het snelste worden opgemaakt ten opzichte van een horizontale y-as door de top van de driehoek, zie fig. 1a.

$$I'_{y} = \int_{0}^{h} z^{2} * \frac{z}{h} b \, dz = \frac{b}{h} \int_{0}^{h} z^{3} \, dz =$$
$$= \left[\frac{b}{4h} z^{4} \right]_{0}^{h} = \frac{1}{4} b h^{3}$$
(35a)

Ten opzichte van een y-as door het zwaartepunt volgt uit de (herschreven) Regel van Steiner; formule [433-(31a)]:

$$I_{y} = \frac{1}{4} b h^{3} - \left(\frac{2}{3} h\right)^{2} * \frac{1}{2} b h =$$

= $\left(\frac{1}{4} - \frac{2}{9}\right) b h^{3} = \frac{1}{36} b h^{3}$ (35b)

Vanuit formule (35b) kan dan weer met behulp van de (oorspronkelijke vorm van de) Regel van Steiner (zie formule[430-(31)]) het kwadratisch oppervlaktemoment om de onderrand van de driehoek worden opgemaakt:

$$I''_{y} = \frac{1}{36} b h^{3} + \left(\frac{1}{3} h\right)^{2} * \frac{1}{2} bh =$$

= $\left(\frac{1}{36} + \frac{1}{18}\right) bh^{3} = \frac{1}{12} bh^{3}$ (35c)

• Oppervlakte-product

Het oppervlakte-product kan het gemakkelijkst worden opgemaakt om een assenkruis door de top van de driehoek, zie fig. 1c. Met behulp van formule [430-(32)] kan dan het oppervlakte-product ten opzichte van het zwaartepunt worden berekend. Van de driehoek van fig. 1c beschouwen we eerst alleen het gerasterde deel in het 1e kwadrant.

$$I'_{yz} = \int_{0}^{A} y z \, dA = \int_{0}^{n} \frac{z}{h} \frac{b}{2} * z * \frac{z}{h} b \, dz =$$
$$= \int_{0}^{h} \frac{b^{2}}{2h^{2}} z^{3} dz = \frac{b^{2}}{2h^{2}} \left[\frac{z^{4}}{4} \right]_{0}^{h} = \frac{1}{8} b^{2} h^{2}$$
(36a)

Het aandeel in het tweede kwadrant is negatief, zodat voor de gehele driehoek geldt:

$$I'_{yz} = \frac{1}{8}h^2(b^2 - a^2)$$
(36)

Kwadratisch oppervlakte-moment van een parallelogram

Het eigen kwadratisch oppervlaktemoment van een parallellogram is direct af te leiden uit dat van een rechthoek, zie fig. 3a. Het bedraagt:

$$I_{y} = \frac{1}{12} b h^{3}$$
(37)

We kunnen het parallelogram ook splitsen in twee driehoeken en dan de regel van Steiner toepassen, zie hiertoe fig. 3b. De uitkomst is van belang voor (dunwandige) Ven W-vormige doorsneden.

Fig. 3 Parallellogram

a. Bepaling van het kwadratisch oppervlaktemoment door integratie

b. Splitsen in twee driehoeken:

$$I_y = 2 * \frac{1}{36} bh^3 + 2 * \frac{bh}{2} (\frac{h}{6})^2 = \frac{1}{12} bh^3$$

19.5.7 CIRKELVORMIGE DOORSNEDEN

Cirkelvormige doorsneden kunnen voorkomen bij kolommen van beton, metselwerk of hout. Dunwandige buisvormige doorsneden komen voor bij stalen kolommen en soms bij vakwerkliggers, die zijn opgebouwd uit stalen buizen, zie bijv. KW-3, fig. [317-2b]. Bij ruimtevakwerken worden in de meeste systemen eveneens buisprofielen toegepast.

De afleiding is opgezet voor een buisvormige doorsnede; hieruit volgt als limiet de cirkelvormige doorsnede, zie fig. 1a, b.

Oppervlak

Buisvormige doorsnede, zie fig. 1a:

$$A = \int_{R_1}^{R_2} 2\pi r \, dr = \left[\pi r^2 \right]_{R_1}^{R_2} = \pi \left(R_2^2 - R_1^2 \right)$$

Cirkelvormige doorsnede, zie fig. 1b: De buisvorm gaat over in een cirkelvorm als geldt: $R_2 = R$ en $R_1 = 0$, zie fig. 1b. Hieruit volgt:

$$A = \pi R^2$$

Ligging zwaartepunt

Het zwaartepunt valt altijd samen met het middelpunt van de cirkelvormige doorsnede(n).

Fig. 1 Cirkelvormige doorsneden

- a. Buisvormige doorsnede
- b. Massieve cirkelvormige doorsnede

Kwadratisch oppervlakte-moment

De kwadratische oppervlakte-momenten om de y- en z-as zijn uit symmetrie-overwegingen hetzelfde. Ze kunnen het eenvoudigste worden bepaald door eerst het polaire kwadratische oppervlaktemoment I_p te berekenen. Dit wordt als volgt gedefiniëerd, zie fig. 2:

$$I_{\rm p} = \int r^2 \, \mathrm{d}A \tag{38}$$

Aangezien geldt: $r^2 = y^2 + z^2$ volgt hieruit:

$$I_{\rm p} = \int_{-\infty}^{A} y^2 \, \mathrm{d}A + \int_{-\infty}^{A} z^2 \, \mathrm{d}A = I_z + I_y \qquad (39)$$

Fig. 2 Polair kwadratisch oppervlakte-moment

Buisvormige doorsnede

Vooral bij buisvormige doorsneden is de bepaling van I_p erg gemakkelijk, zie fig. 1a.

$$I_{p} = \int_{R_{1}}^{R_{2}} r^{2} * 2\pi r \, \mathrm{d}r = \left[\frac{1}{2}\pi r^{4}\right]_{R_{1}}^{R_{2}} = \frac{1}{2}\pi \left(R_{2}^{4} - R_{1}^{4}\right)$$
(40)

Uit symmetrie-overwegingen moet dan gelden:

$$I_{y} = I_{z} = \frac{1}{4} \pi \left(R_{2}^{4} - R_{1}^{4} \right)$$
(41)

Cirkelvormige doorsnede

 I_p volgt uit (40) voor $R_2 = R$ en $R_1 = 0$, zodat geldt $I_p = 1/2 * \pi R^4$ (40a) en hieruit volgt weer:

$$I_{y} = I_{z} = \frac{1}{4}\pi R^{4}$$
 (42)

19.6 SAMENGESTELDE DOORSNEDE-VORMEN

19.6.1 DOORSNEDEN MET TWEE OF MEER SYMMETRIE-ASSEN

Als zowel de y-as als de z-as een symmetrie-as van de doorsnede is, valt het zwaartepunt van de doorsnede samen met het snijpunt van de symmetrie-assen, zodat we het lineaire oppervlaktemoment niet behoeven te berekenen.

Het kwadratisch oppervlaktemoment kan dan worden bepaald als de som of het verschil van de rechthoeken waaruit het profiel is opgebouwd. Dit systeem werkt wat sneller dan toepassing van de Regel van Steiner.

In fig. 3 zijn twee voorbeelden gegeven, waarbij zowel I_y als I_z is bepaald.

Bij de I-vormige doorsnede van fig. 3a kunnen we het kwadratisch oppervlakte-moment om de y-as bepalen als het verschil van twee (eigenlijk drie) oppervlakken en het kwadratisch oppervlakte-moment om de z-as als de som van twee (eigenlijk drie) oppervlakken.

$$I_y = 1/12 * bh^3 - 1/12 * (b_1 - b_2) h_2^3$$

$$I_z = 1/12 * 2h_1b_1^3 + 1/12 * h_2b_2^3$$

De kokervormige doorsnede van fig 3b kan om beide assen worden opgevat als het verschil van twee oppervlakken.

 $I_y = 1/12 * b_1 h_1^3 - 1/12 * b_2 h_2^3$ $I_y = 1/12 * h_1 b_1^3 - 1/12 * h_2 b_2^3$

Als een doorsnede meer dan 2 symmetrie-assen bezit, zal het kwadratisch oppervlaktemoment om minstens 2 symmetrie-assen gelijk moeten zijn, zie fig. 4. Dan is *I* constant, onverschillig om welke as het wordt opgemaakt, zie [441-3] $(I_y = I_z = I \text{ en } I_{yz} = 0$, zodat een puntcirkel ontstaat). De waarde van I_y voor het vierkant 'op zijn kant' van fig. 5b is dus ook gelijk aan:

$$I_{v} = 1/12 * a^{2}$$

Dit is zo nodig te controleren door het vierkant op te vatten als de som van twee driehoeken (NB; de weerstandsmomenten zijn *niet* gelijk).

- Fig.3 Doorsneden met twee symmetrie-assen
- a. I-vormige doorsnede

b. Kokervormige doorsnede

Fig. 5 Vierkante doorsnede: $I = 1/12 * a^4$ a. $W = I : (a/2) = 1/6 * a^3$ b. $W = I : (a\sqrt{2}/2) = 1/12 * a^3 \sqrt{2}$

19.6.2 DOORSNEDEN MET SLECHTS ÉÉN SYMMETRIE-AS

Indien de doorsnede slechts één symmetrie-as bezit, kan het kwadratisch oppervlaktemoment om deze as op dezelfde wijze worden opgemaakt als in [437], zie fig. 1a. De ligging van het zwaartepunt is hierbij niet van belang.

Voor de loodrecht hierop staande richting moet eerst de ligging van het zwaartepunt worden bepaald met behulp van het lineaire oppervlaktemoment S, zoals hiernaast is weergegeven. Het kwadratisch oppervlaktemoment kan worden bepaald met behulp van de Regel van Steiner. Veelal is het echter eenvoudiger om de doorsnede opgebouwd te denken uit de som en/of het verschil van een aantal rechthoeken. Het kwadratisch oppervlakte-moment wordt dan bepaald als de algebraïsche sommatie van de onderdelen om de neutrale lijn. In fig. 2 zijn een drietal mogelijkheden weergegeven. Bij twee er van wordt weer van de Regel van Steiner gebruik gemaakt. Alle procedures leiden uiteraard tot hetzelfde resultaat.

Kies een methode naar eigen goeddunken!

- Fig. 1Kwadratisch oppervlakte-momenta.Afmetingen van de doorsnedeb.Bepaling van I_z
- $I_7 = 1/12 (20 * 75^3 + 60 * 25^3) = 781 250 \text{ mm}^4$

Benodigde grootheden om de y-as:

 $A = 75 * 20 + 25 * 60 = 3000 \text{ mm}^2$

Lineair oppervlaktemoment ten opzichte van de bovenzijde van de doorsnede:

$$S_v = 75 * 20 * 10 + 25 * 60 * 50 = 90000 \text{ mm}^3$$

Zwaartepunts-afstand ten opzichte van de bovenzijde:

$$z_{\rm b} = S_y / A = 90\ 000 / 3000 = 30\ \rm{mm}$$

Methode I (fig.2a)

Kwadratisch oppervlakte-moment beschouwd als de algebraïsche som van drie oppervlakken die aan één zijde grenzen aan de neutrale lijn:

$$I_y = 1/3 (75 * 30^3 - 50 * 10^3 + 25 * 50^3) =$$

= 1700 * 10³ mm⁴

Methode II (fig. 2b)

Kwadratisch oppervlaktemoment eerst opgemaakt om de bovenzijde van de doorsnede, daarna wordt met de Regel van Steiner het eigen kwadratisch oppervlaktemoment bepaald

$$I'_{y} = \frac{1}{3} (50 * 20^{3} + 25 * 80^{3}) = 4400 * 10^{3} \text{ mm}^{4}$$
$$I_{y} = I'_{y} - A * z_{b}^{2} = 4400 * 10^{3} - 3000 * 30^{2} = 1700 * 10^{3} \text{ mm}^{4}$$

Methode III (fig. 2c)

Rechtstreekse toepassing van de Regel van Steiner voor flens en lijf ten opzichte van het zwaartepunt van de gehele doorsnede

$$I_y = 75 * 20 * 20^2 + 25 * 60 * 20^2 +$$

+ 1/12 (75 * 20³ + 25 * 60³) = 1700 * 10³ mm⁴

19.6.3 ALGEMENE FORMULERING

Bepaling oppervlak, zie fig. 3a:

$$A = b_1 h_1 + b_2 h_2 + b_3 h_3$$

Bepaling statisch moment om de bovenrand:

$$\begin{split} S_{y} &= b_{1} h_{1} z_{1} + b_{2} h_{2} z_{2} + b_{3} h_{3} z_{3} \\ z_{b} &= \frac{S_{y}}{A} \end{split}$$

Kwadratisch oppervlaktemoment I_v

METHODE III

Regel van Steiner toegepast ten opzichte van de neutrale lijn, zie fig. 3b:

$$I_{y} = b_{1} h_{1} a_{1}^{2} + b_{2} h_{2} a_{2}^{2} + b_{3} h_{3} a_{3}^{2}$$
$$+ \frac{1}{12} b_{1} h_{1}^{3} + \frac{1}{12} b_{2} h_{2}^{3} + \frac{1}{12} b_{3} h_{3}^{3}$$

METHODE I

Visuele aanpak volgens [443] e.v.

Kwadratisch oppervlakte-moment rechtstreeks opgemaakt ten opzichte van de neutrale lijn, door steeds het verschil van twee rechthoeken te nemen, zie fig. 3c

$$I_{y} = \frac{1}{3} b_{1} (c_{1}^{3} - c_{2}^{3}) + \frac{1}{3} b_{2} (c_{2}^{3} + c_{3}^{3}) + \frac{1}{3} b_{3} (c_{4}^{3} - c_{3}^{3})$$

Kwadratisch oppervlakte-moment I_z

METHODE III

Dit is een bijzonder geval van methode III, omdat alleen de drie eigen kwadratische oppervlaktemomenten van de samenstellende delen behoeven te worden opgeteld, zie fig. 3a.

$$I_{z} = \frac{1}{12} h_{1} b_{1}^{3} + \frac{1}{12} h_{2} b_{2}^{3} + \frac{1}{12} h_{3} b_{3}^{3}$$

- O zwaartepunt rechthoekige onderdelen
- zwaartepunt gehele doorsnede
- Fig. 3 Bepaling doorsnede-grootheden van samengestelde profielen
- a. Bepaling A en S
- b. c. Bepaling kwadratisch oppervlakte-moment I
- b. Methode III; toepassing van de regel van Steiner
- c. Methode I; rechtstreekse bepaling ten opzichte van de neutrale lijn

19.7.1 INLEIDING TOT DE PROBLEMATIEK

Asymmetrische doorsneden komen veel minder voor dan symmetrische doorsneden; in fig. 1 zijn twee voorbeelden gegeven. Bij het keersymmetrische Z-profiel van fig. 1a ligt het zwaartepunt in het midden van het lijf. Bij het asymmetrische L-profiel daarentegen, moeten zowel S_y als S_z worden berekend om de ligging van het zwaartepunt te kunnen bepalen. Zodra deze ligging bekend is, kunnen de grootheden I_y en I_z worden bepaald zoals is besproken in [438] en [439].

Als alleen een buigend moment M_{y} aangrijpt, zouden we de buigspanningen op de gebruikelijke manier kunnen bepalen met behulp van formule [426-(26)]. Het vervelende punt is echter dat door deze spanningsverdeling tegelijkertijd ook een moment wordt opgewekt om de z-as. In fig. 2 is voor een gestyleerd Z-vormig profiel de aldus berekende spanningsverdeling ten gevolge van M_{ν} ruimtelijk weergegeven. Hieruit volgt direct dat de beide flenzen niet alleen een koppel leveren om de y-as, maar tegelijkertijd ook om de z-as. Deze spanningsverdeling kan dus uitsluitend optreden als behalve het moment M_{ν} tegelijkertijd ook een moment M_{z} op de doorsnede aangrijpt. De vector van het resulterende moment is kennelijk niet meer evenwijdig aan de neutrale lijn, zie fig. 2d.

In [425] is de oorzaak hiervan reeds aangeduid; het oppervlakteproduct I_{yz} is niet langer gelijk aan nul. Uit [425-(20a) en (21)] volgt:

$$M_y = \frac{E}{R} I_y$$

Uit [425-(23) en (24)] volgt:

$$M_{z} = \frac{E}{R} I_{yz}$$

Aangezien voor beide formules dezelfde vervormde ligger is beschouwd, is de factor E/Rin beide gevallen gelijk, zodat geldt:

$$M_z / M_y = I_{yz} / I_y \tag{43}$$

- Fig. 1 Enkele asymmetrische doorsnede-vormen van staalprofielen
- a. Asymmetrisch Z-profiel en L- profiel
- (met ligging van de hoofdassen)
- b. Symmetrisch L- profiel, hoofdassen onder 45°

- b. Spanningsverdeling ruimtelijk uitgezet bij een horizontale neutrale lijn
- c. Koppels om de *y*-as en de *z*-as ten gevolge van de krachten in de flenzen
 d. Resulterend moment M_R

$$\begin{split} K_{y} &= F_{1}z_{1} + F_{2}z_{2} \\ K_{z} &= F_{1}y_{1} \ (+ \ F_{2} * 0 \) \end{split}$$

19.7.2 BEPALING VAN I

De afmetingen van het gestyleerde Z-profiel zijn weergegeven in fig. 2a.

Kwadratisch oppervlakte-moment I_y , bepaald met behulp van methode III [439].

$$I_{y} = \frac{1}{12} t h^{3} + 2 \frac{1}{12} (b-t) t^{3} + 2 (b-t) t (\frac{h-t}{2})^{2}$$

Nmerieke uitwerking, zie fig. 2a:

$$I_{y} = \frac{1}{12} \ 10 * 120^{3} + 2 * \frac{1}{12} \ 50 * 10^{3} + 2 * 50 * 10 * 55^{2} = 4473.3 * 10^{3} \text{ mm}^{4}$$

Kwadratisch oppervlakte-product I_{yz} , bepaald met behulp van methode III [439].

Alle 'eigen' oppervlakte-produkten van de samenstellende delen zijn hierbij gelijk aan nul, maar beide flenzen leveren een positief aandeel aan I_{yz} , omdat de coördinaten y en z zich in het 1e en 3e kwadant bevinden, zie fig. 3a1.

(+*+=+ en -*-=+) $I_{yz} = 2(b-t) t \frac{b}{2} \frac{h-t}{2}$

Numerieke uitwerking, zie fig. 2a

$$I_{yz} = 2 * 50 * 10 * 30 * 55 = 1650 * 10^3 \text{ mm}^4$$

Uit formule (43) volgt dan als verhouding tussen de buigende momenten:

 $M_z / M_y = 1650 / 4473 = 37 \%$

In fig. 2d is ook de resulterende momentvector $M_{\rm R}$ weergegeven, alleen déze vector veroorzaakt dus een horizontale neutrale lijn. Omgekeerd zal dus een horizontale momentvector een schuine neutrale lijn veroorzaken.

Als we het assenkruis y-z van fig. 3a1 draaien tot de stand y'-z' van fig. 3a2, dan liggen lijf en flenzen van het profiel vrijwel geheel in het 2e en 4e kwadrant zodat het oppervlakteproduct I_{yz} dan negatief moet zijn.

Ergens tussen de oorspronkelijke en de geroteerde stand in, zal het oppervlakteproduct dan gelijk aan nul moeten zijn. Als we die stand weten te bepalen, dan zal een momentvector evenwijdig aan de y"-as dus alleen een uitbuiging van de doorsnede in de z"-richting veroorzaken. De afleiding hiervan volgens Mohr valt buiten het bestek van KW-4. Maar we zullen wel de uitkomsten van een dergelijke berekening weergeven. Uitgangspunt; bereken: I_y , I_z , I_{yz} . Kwadratisch oppervlakte-moment I_z , bepaald met behulp van het eigen kwadratische oppervlaktemoment van de twee flenzen plus dat van het lijf:

$$I_{z} = \frac{1}{12} t (2b-t)^{3} + \frac{1}{12} (h-t) t^{3}$$
$$I_{z} = \frac{10}{12} \left[(110)^{3} + 110 * 10^{2} \right] = 1118 * 10^{3} \text{ mm}^{4}$$

Fig. 3 Extreme waarden van het kwadratisch oppervlaktemoment

a. Drie standen van het assenkruis
1: I_{yz} > 0; 2: I_{yz} < 0; 3: I_{yz} = 0;
b. Constructie van de cirkel van Mohr (zie KW-7)

Bepaling van de extreme waarden van het kwadratische oppervlaktemoment met behulp van een grafische constructie: de cirkel van Mohr.

Zet de kwadratische oppervlakte-momenten I_y en I_z uit in de richting van de y-as (punten B en A in fig. 3b) en het oppervlakteproduct I_{yz} in de richting van de z-as ter plaatse van I_z (punt C in fig. 3b).

Bepaal het midden M van A en B en beschrijf met MC als straal een cirkel, die de y-as snijdt in de punten D en E. Als het profiel in de oorspronkelijke stand wordt gehouden dan geeft CD de richting aan van de z''-as met het minimale kwadratische oppervlaktemoment I_2 (ter grootte van OD) en CE de richting van de y''-as met het maximale kwadratische oppervlaktemoment I_1 (ter grootte van OE). De grootte van de extreme kwadratische oppervlakte-mo-

$$I_{1,2} = \frac{I_y + I_z}{2} \pm \sqrt{\left(\frac{I_y - I_z}{2}\right)^2 + I_{yz}^2}$$

menten is eenvoudig te bepalen uit fig. 3b:

Substitutie van de berekende waarden levert:

$$I_{1,2} = 10^{3} \left[2795 \pm \sqrt{1677^{2} + 1650^{2}} \right]$$

$$I_{1} = 10^{3} (2795 + 2352) = 5147 * 10^{3} \text{ mm}^{4}$$

$$I_{2} = 10^{3} (2795 - 2352) = 443 * 10^{3} \text{ mm}^{4}$$

Voorts geldt:

tg
$$\alpha = I_{yz} / (I_1 - I_z) = 1650 / (5147 - 1118) = 0,41$$

19.7.3 GEBRUIK VAN TABELLEN

Voor staal- en aluminiumprofielen zijn de afmetingen en de daaruit volgende doorsnede-grootheden in tabellenboeken en anderssoortige publicaties te vinden, zodat we die grootheden niet meer zelf behoeven uit te rekenen. In fig. 2 is een klein uittreksel weergegeven uit de brochure van een staalleverancier. Voor dit geval zijn de richtingen van de assen in overeenstemming gebracht met die van KW-4, maar is de notatie van de doorsnedegrootheden in cm gehandhaafd (in plaats van in mm) omdat dan niet zoveel nullen nodig zijn. Let dus steeds op de benaming van de assen en de dimensie van de eenheden!

Bij asymmetrische profielen wordt ook de ligging van de hoofdassen weergegeven (y''-z'') en de grootte van de extreme kwadratische oppervlaktemomenten I_1 en I_2 .

Voor dit assenkruis y''-z'' kunnen de buigspanningen ten gevolge van M''_y en M''_z weer op de gebruikelijke manier worden bepaald [426]. Een moment M_y moet dan eerst wel worden ontbonden in de richtingen y'' en z'', zoals is weergegeven fig. 1. Het Z-vormige profiel wordt intussen niet meer geleverd; het is voornamelijk besproken omdat het verschijnsel van een scheefstaande neutrale lijn bij verticale belasting hier het duidelijkst naar voren komt.

2

Als voor een ligger de numerieke waarde van het moment globaal bekend is, evenals de grootte van de aan te houden spanning in het bezwijkstadium, dan volgt de grootte van het benodigde weerstandsmoment uit formule [427-(28)], zie ook 19.4.7 [427]:

 M''_{v} (1) en M''_{z} (2)

$$W = M / \sigma \tag{28}$$

Uit een tabel als in fig. 2 volgt dan welk profiel minstens nodig is. De waarde $i = \sqrt{(I/A)}$ wordt gebruikt bij knikberekeningen, zoals wordt beschreven in KW-5.

NO	Afmetingen							Doorsnede-grootheden						
	h	b	t ₁	t ₂	r	A	G	I_y	W_{y}	i _y	I_z	Wz	i _z	t _o r
	mm	mm	mm	mm	mm	cm ²	kg/m	cm ⁴	cm ³	cm	cm4	cm ³	cm	h h
100	100	100	6	10	12	26.0	20.4	450	90	4.16	167	33	2.53	
120	120	120	6,5	11	12	34,0	26,7	864	144	5,04	318	53	3,06	│
140	140	140	7	12	12	43,0	33,7	1 509	216	5,93	550	79	3,58	y y
160	160	160	8	13	15	54,3	42,6	2 429	311	6,78	889	111	4,05	
180	180	180	8,5	14	15	65,3	51,2	3 831	426	7,66	1 363	151	4,57	▼
200	200	200	9	15	18	78,1	61,3	5 696	570	8,54	2 003	200	5,07	-
}														Fig. 2
220	220	220	9,5	16	18	91,0	71,5	8 091	736	9,43	2 843	258	5,59	Uittreksel uit de
240	240	240	10	17	21	106,0	83,2	11 259	938	10,3	3 923	327	6,08	profielgegevens
260	260	260	10	17,5	24	118,4	93,0	14 919	1 150	11,2	5 135	395	6,58	voor Europese
280	280	280	10,5	18	24	131,4	103	19 270	1 380	12,1	6 595	471	7,09	breedflens-
300	300	300	11	19	27	149,1	117	25 166	1 680	13,0	8 563	571	7,58	profielen HE-B

19.8.1 RECAPITULATIE

Het kwadratisch oppervlaktemoment I is een hulpgrootheid om de *buigspanningen* (d.w.z normaalspanningen ten gevolge van een buigend moment) in een staaf of een ligger te kunnen berekenen.

Evenzo kunnen we de staafdoorsnede A als een hulpgrootheid beschouwen om de *normaalspanningen* te bepalen in een centrisch getrokken of gedrukte staaf. Omdat de spanning over de doorsnede hier constant is, volgt, zie fig. 2b:

$$\sigma = \frac{F}{A} \tag{44}$$

De grootheid die de spanning veroorzaakt – hier dus de kracht F – moet door de hulpgrootheid Aworden gedeeld om de spanning te vinden.

Bij buiging zijn de spanningen gelijk aan nul in de neutrale lijn en verlopen verder lineair over de hoogte, zie fig. 2c. Daarom staat in de buigingsformule ook de afstand z tot de neutrale lijn:

$$\sigma = \frac{Mz}{I} \tag{45}$$

Qua opbouw is er niet veel verschil met formule (44). Ook in formule (45) moet de grootheid die de spanning veroorzaakt – in dit geval het buigend moment M – weer worden gedeeld door de hulpgrootheid I om de spanning te vinden.

Hoewel de meeste studenten de rekenregels om de grootheid I te bepalen wel beheersen, is het voor velen toch vrij moeilijk om zich bij deze grootheid ook maar iets voor te stellen.

Recapitulatie

De afleiding van de buigingsformule is weergegeven in [418-421].

In [422-427] worden doorsneden behandeld die minstens één symmetrie-as bezitten. De bepaling van de daarbij benodigde doorsnede-grootheden: A - S - I - W, is uitvoerig besproken in [428-439]. Hierbij is een strikt analytische werkwijze toegepast. In deze paragraaf (19.8) wordt aangenomen, dat de bepaling van het zwaartepunt van een doorsnede niet op moeilijkheden zal stuiten [439-3a].

Voor de bepaling van het kwadratisch oppervlaktemoment I beperken we ons tot doorsnedevormen, die minstens één symmetrie-as bezitten en bovendien uit rechthoeken zijn opgebouwd.

De afleiding wordt nu echter op een meer visuele wijze gegeven, die in hoofdlijnen overeenkomt met het behandelde in [420-421].

We hanteren hierbij maar één manier, die snel tot een oplossing leidt.

Voor wat ingewikkelder doorsnedevormen zoals bijv. driehoeken en cirkels moet de meer algemene aanpak van paragraaf 19.5 worden gevolgd [434 t/m 436].

Fig. 1 Spanningsverdeling

- a. Doorsnede
- b. Normaalpsanningen
- c. Buigspanningen

19.8.2 VISUALISERING VAN HET PROBLEEM

We beschouwen een liggertje van polystyreenschuim dat we in het middendeel aan een zuiver buigend moment onderwerpen, d.w.z. aan een constant buigend moment, zie fig. 1a. Er blijken maar heel kleine krachtjes nodig te zijn, om een behoorlijke doorbuiging te krijgen.

Vervolgens nemen we een houten plankje van precies dezelfde afmetingen. Om dit plankje dezelfde doorbuiging te geven als het liggertje van polystyreenschuim zijn nu aanmerkelijk grotere krachten nodig, zie fig. 1b.

De geometrische afmetingen van beide liggertjes zijn dezelfde, het verschil ligt uitsluitend in de grootte van de elasticiteitsmodulus E.

De krachten in het tweede geval zijn $800 \times zo$ groot als in het eerste geval, dit betekent dat ook de *E* van deze houtsoort $800 \times zo$ hoog is als die van polystyreenschuim (*E*_h = 24 000 N/mm², *E*_p = 30 N/mm²).

Als we het liggertje van polystyreenschuim 3 \times zo hoog maken als in het eerste proefje, dan kunnen we weer zorgen dat een zuiver buigend moment precies dezelfde kromming veroorzaakt als in het eerste proefje, zie fig. 1c. De benodigde krachten zijn intussen 27 \times zo groot geworden. De overeenkomstige proef op een houten balkje kunnen we maar beter nalaten. Niet alleen omdat die krachten ook 27 \times groter moeten worden, maar vooral omdat het balkje voor die tijd zo goed als zeker al gebroken zal zijn.

Behalve de elasticiteitsmodulus spelen dus ook de afmetingen en de sterkte van het materiaal een grote rol in het buigingsverschijnsel.

Bij de kwadratische oppervlaktemomenten beperken we ons uitsluitend tot de geometrie van de liggerdoorsnede.

In de buigingsformule voor liggers worden beide grootheden daarom samengevoegd tot de buigstijfheid *EI*. De sterkte van het materiaal komt bij de volgende beschouwingen nog niet aan de orde.

1

b

Fig. 1 Liggertjes onderworpen aan een

vierpuntsbuigproef

- a. Liggertje van polystyreenschuim $(A = b \times h)$
- b. Liggertje van hout $(A = b \times h)$ c. Liggertje van polystyreenschuim (
 - Liggertje van polystyreenschuim $(A = b \times 3h)$

19.8.3 ZUIVER BUIGEND MOMENT IN EEN DOORSNEDE

We beschouwen een aantal balkjes met verschillende doorsneden, maar wel van hetzelfde materiaal. Als we al deze balkjes dezelfde kromming geven, heeft de kromtestraal voor alle balkjes dezelfde waarde, zie fig. 2. Dit betekent dat op een afstand 1 vanaf de neutrale lijn (d.w.z. 1 mm als we in mm's werken en 1 m als we in m's werken), de spanning σ_1 voor alle balkjes gelijk is. Omdat vlakke doorsneden vlak blijven, ligt het spanningsverloop dus over gehele doorsnede vast, zie fig. 2.

Aan de onderzijde van de neutrale lijn leveren de buigspanningen een trekkracht F_t , aan de bovenzijde een drukkracht F_d , zie fig. 3. Beide krachten moeten even groot zijn vanwege het horizontale evenwicht. Het buigend moment M is dan gelijk aan het koppel $K = F * z_0$ dat beide krachten tezamen leveren, zie fig. 3c. Om dit koppel te bepalen kan het moment in principe worden opgemaakt om elke lijn, die evenwijdig is aan de neutrale lijn. Aangezien de neutrale lijn in fig. 3c loodrecht op het vlak van tekening staat, is het moment in deze figuur achtereenvolgens opgemaakt om twee punten:

- een willekeurig punt P
- een punt O in de neutrale lijn

Uiteraard zijn de uitkomsten gelijk.

Wij zullen in het vervolg hiervoor echter consequent de neutrale lijn zèlf gebruiken.

Fig. 2 Spanningsverloop in drie balkjes met verschillende doorsneden, die elk zijn onderworpen aan een zodanig constant buigend moment dat de kromming voor de drie balkjes gelijk is

Voor de balkjes geldt:

- van hetzelfde materiaal (E)
- met dezelfde kromtestraal (R)
- met verschillende doorsnede (A)

Fig. 3 Moment in een doorsnede

- a. Doorsnedevorm
- b. Spanningsverloop bij een zuiver buigend moment
- c Het buigend moment is gelijk aan het koppel van trek- en drukkracht

Moment om punt P:

$$M = +F(a+z_0) - Fa = Fz_0$$

Moment om punt O:
$$M = +Fz_{01} + Fz_{02} = Fz_0$$

19.8.4 BEPALING VAN HET MOMENT UIT HET SPANNINGSVERLOOP

In fig. 1b is het spanningsverloop over de doorsnede ruimtelijk uitgezet. We zullen nu in een onderdeel van de doorsnede nagaan, welk aandeel de daar optredende spanningen leveren aan het buigend moment. We kiezen hiervoor het rechthoekige deel dat in fig. 1c met een raster is weergegeven. Dit strekt zich uit vanaf de neutrale lijn tot de onderrand van de doorsnede. In fig. 1d is het ruimtelijke spanningsverloop hiervan weergegeven. .

De spanning op een afstand 1 wordt weer gelijk gesteld aan σ_1 en de spanningsgradiënt d σ / dz aan σ_1 . De maximale spanning op een afstand a_1 is dan gelijk aan: $\sigma_{\max} = \sigma_1' * a_1$. De totale trekkracht is gelijk aan de inhoud van de spanningsfiguur, zie fig. 1d. We vinden dus:

$$F_{1} = \frac{1}{2} b_{1} a_{1} \sigma_{\max} = \frac{1}{2} b_{1} a_{1} \sigma'_{1} a_{1} = a$$
$$= \frac{1}{2} b_{1} a_{1}^{2} \sigma'_{1}$$
(46)

Deze kracht grijpt aan in het zwaartepunt van de spanningsfiguur; de afstand tot de neutrale lijn is dan gelijk aan: $a_{01} = 2/3 a_1$.

De kracht F_1 levert dus de volgende bijdrage aan het buigend moment:

$$\Delta M_1 = F_1 * a_{01} = \frac{1}{2} b_1 a_1^2 \sigma_1' * \frac{2}{3} a_1$$

ofwel

$$\Delta M_1 = \frac{1}{3} b_1 a_1^3 \sigma_1' \tag{47}$$

Als het kwadratisch oppervlaktemoment van het beschouwde deel 1 definiëren we:

$$I_1 = \frac{1}{3} b_1 a_1^3 \tag{48}$$

In deze notatie is b dus evenwijdig aan de neutrale lijn en staat *a loodrecht* op de neutrale lijn. Substitutie van (48) in (47) levert voor deel 1:

$$\Delta M_1 = I_1 * \sigma'_1 \tag{49}$$

1

Fig. 1 Spanningsverloop bij zuivere buiging Vorm van de doorsnede

Spanningsverloop ruimtelijk uitgezet

Alleen het gerasterde deel van de doorsnede wordt nader beschouwd

Spanningsverloop in het gerasterde deel van de doorsnede ruimtelijk uitgezet

a.

b.

c.

d.

Het aandeel dat een flensdeel buiten het lijf aan het buigend moment levert, is dan eenvoudig weer te geven als het verschil van twee driehoekig verlopende inhouden, zie fig. 2a:

$$\Delta M_2 = \left(\frac{1}{3}b_2a_1^3 - \frac{1}{3}b_2a_2^3\right) * \sigma_1' \qquad (50)$$

ofwel

$$\Delta M_2 = I_2 * \sigma_1' \tag{51}$$

Het moment dat door de gehele doorsnede wordt overgebracht is dan gelijk aan de som van alle momentaandelen:

$$M = \Sigma (I_{i} * \sigma_{1}') = \sigma_{1}' \Sigma I_{i} = \sigma_{1}' * I$$
(52)

Uit formule (52) volgt dan voor de spanningsgradiënt (spanning op een afstand 1 vanaf de neutrale lijn gedeeld door de afstand 1):

$$\sigma_1' = \frac{M}{I} \tag{53}$$

Op een afstand z vanaf de neutrale lijn volgt dan voor de spanning σ :

$$\sigma = \frac{Mz}{I} \tag{54}$$

Hiermee hebben we de formule voor de spanningsverdeling in dezelfde gedaante gebracht als in [426-(26)].

- Fig. 2 Aandeel van een flens aan het kwadratisch oppervlaktemoment
- a. Beschouwde deel van de doorsnede
- b. Spanningsverloop in het flensdeel buiten het lijf aan de rechterkant
- c. Het beschouwde deel is gelijk aan het verschil van twee driehoekig verlopende inhouden van de spanningsfiguur

19.8.5 BEPALING KWADRATISCH OPPERVLAKTE-MOMENT

Voor de bepaling van het kwadratisch oppervlakte-moment van doorsneden die zijn opgebouwd uit rechthoeken gebruiken we dus als standaardformule:

$$I_1 = \frac{1}{3} b_1 a_1^3 \tag{48}$$

Er wordt met nadruk op gewezen dat de betreffende rechthoek met één zijde moet samenvallen met de neutrale lijn, zie fig. 1a.

Als dit niet het geval is, moet de rechthoek worden gesplitst in het verschil of de som van twee rechthoeken, zie fig. 1b.

Voor een rechthoek die symmetrisch is gelegen ten opzichte van de neutrale lijn, geldt :

$$a = \frac{1}{2}h$$

Voor het kwadratisch oppervlaktemoment volgt dus:

$$I = 2 * \frac{1}{3} b a^{3} = \frac{1}{12} b h^{3}$$
(55)

Voor symmetrische doorsneden zoals kokers en I-profielen werkt het iets sneller als formule (55) wordt gebruikt, zie fig. 2.

Voor kokerprofielen volgt I dan weer als het verschil van twee oppervlakken, zie fig. 3a1.

Voor een I-profiel geldt hetzelfde voor I_y ; zie fig. 3a2. Voor de bepaling van I_z kan echter alleen met de som van de oppervlakken worden gewerkt, zie fig. 3b.

Fig. 2 Symmetrische profielen

a. Kokerprofiel

b. I-profiel

- Fig. 1 Aandeel van een rechthoek aan het kwadratisch oppervlaktemoment
- a. Rechthoek grenst aan de neutrale lijn
- b. Rechthoek grenst niet aan de neutrale lijn
- b1 Verschil van twee rechthoeken
- b2 Som van twee rechthoeken

Fig. 3 Berekening kwadratisch oppervlaktemoment

- a. Verschil van twee oppervlakken:
- a1 Koker: I_y en I_z
- a2 I-profiel: alleen I_y
- b. Som van twee oppervlakken: I-profiel I_z

Dunwandige profielen

Bij dunwandige profielen kan de invloed van de flenzen ook op een iets andere manier in rekening worden gebracht. In fig. 4b, c is het spanningsverloop zowel ruimtelijk als in zijaanzicht weergegeven. In een flens kunnen de spanningen worden gesplitst in een constante gemiddelde spanning en in een lineair verlopende spanning, zie fig. 4c. De constante spanning is gelijk aan: $\sigma_{gem} = z_1 \sigma'_1$; ze levert een bijdrage aan het buigend moment ter grootte:

$$\Delta M_{1} = \sigma_{gem} * b_{1}a_{1} * z_{1} = \sigma'_{1}z_{1} * A_{1}z_{1}$$

ofwel

$$\Delta M_1 = \sigma'_1 * A_1 z_1^2 \tag{56}$$

Het kwadratisch oppervlaktemoment voor dit deel moet dus gelijk zijn aan:

$$I_1 = A_1 z_1^2$$
(57)

Het lineair verlopende spanningsaandeel dat nog niet in rekening is gebracht levert een koppeltje, dat even groot is als wanneer de flens zich ter plaatse van de neutrale lijn zou hebben bevonden, zie fig. 4c. Dit levert dus als aandeel aan het kwadratisch oppervlaktemoment:

$$I_2 = \frac{1}{12} b_1 a_1^3 \tag{58}$$

De totale bijdrage van de flens aan het kwadratisch oppervlakte-moment is dus gelijk aan:

$$I_{\text{flens}} = I_1 + I_2 \tag{59a}$$

Voor het aandeel van beide flenzen samen, vermeerderd met het aandeel van het lijf geldt dus:

$$I = 2 * I_{\text{flens}} + I_{\text{liff}}$$
(59)

Formule (59) geeft de Regel van Steiner weer, die in [430] op puur analytische wijze is afgeleid.

Fig. 4 Bijdrage van een flens aan het kwadratisch oppervlaktemoment

a. Doorsnede

b. Spanningsverloop ruimtelijk uitgezet

Het zal duidelijk zijn dat de bijdrage van I_2 vrijwel verwaarloosbaar is ten opzichte van de andere aandelen Dit geeft ons een middel om een goede indruk te krijgen in welke mate de delen van dunwandige profielen bijdragen aan de buigstijfheid. We zullen hiervoor een aantal fictieve profielen gebruiken, die geheel zijn opgebouwd uit gelijke rechthoekige onderdelen, zie blad [450].

19.8.6 ONDERLINGE VERGELIJKING DUNWANDIGE PROFIELEN

Om enige feeling te verkrijgen in de effectiviteit van dunwandige profielen zijn in fig. 1 een aantal gestyleerde profielen met elkaar vergeleken. Alle basisprofielen hebben een vierkante buitenomtrek, terwijl alle samenstellende delen dezelfde dikte en lengte bezitten (hartmaten), zoals is weergegeven in fig. 1c (met c 5 als uitzondering). We hebben dan te maken met drie posities van de smalle rechthoeken met oppervlak A = b t, ten opzichte van de neutrale lijn, zie fig. 1b. De kwadratische oppervlakte-momenten ten opzichte van de neutrale lijn van het profiel bedragen dan:

1
$$I_1 = \frac{1}{12} b t^3$$

2
$$I_2 = \frac{1}{12} t b^3$$

3
$$I_3 = bt * (\frac{b}{2})^2 + \frac{1}{12}bt^3$$

NB; de indices 1, 2, 3 van *I* hebben hierbij een andere betekenis dan op blad [449].

Bij een verhouding t/b = 1/10 volgt dan dat I_1 slechts 1 % bedraagt van I_2 , zodat we de bijdrage van I_1 zonder meer kunnen verwaarlozen. We houden dan over:

$$I_2 = \frac{1}{12} t b^3$$
 (60)

$$I_3 = \frac{1}{4} t b^3$$
(61)

Dit betekent dus dat I_3 driemaal zoveel bijdraagt aan de stijfheid als I_2 . Als we nu alle aandelen aan de stijfheid uitdrukken in die van I_2 , dan geeft een eenvoudige optelsom de totale stijfheid, zie fig. 1c.

De effectiviteit van een bepaalde doorsnede in vergelijking met andere vormen, die op het eerste gezicht gelijkwaardig overkomen, is op deze wijze zeer eenvoudig na te gaan.

- b. Bijdragen ΔI van de diverse onderdelen voor de bepaling van I_y
- c. Vergelijking van de stijfheden, [uitgedrukt in I_2 , zie formule (60)]

19.8.7 VEREENVOUDIGDE BEPALING *I* BIJ DUNWANDIGE PROFIELEN

Zoals reeds is vermeld, kunnen de doorsnedegrootheden voor dunwandige profielen (staal, aluminium, messing) worden ontnomen aan tabellenboeken. Als we echter te werk gaan op de wijze als in [450] is omschreven, dan zijn de benodigde grootheden ook eenvoudig te berekenen. De essentie is dan dat van alle onderdelen waarvan de middellijn evenwijdig is aan de neutrale lijn, de eigen kwadratische oppervlaktemomenten in de Regel van Steiner worden verwaarloosd. Alle afrondingen van rechte hoeken worden eveneens verwaarloosd.

Voorbeeld: Profiel HE 200 B Afmetingen: h = 200 mm

b	=	200	$\mathbf{m}\mathbf{m}$	
t_1	=	9	mm	(lijf)
t_2		15	mm	(flens)

Hieronder zijn de berekeningen rechtstreeks uitgevoerd, wellicht ten overvloede is de berekening in de rechterkolom ook nog in symbolen weergegeven.

$$I_{y} = 2 * 200 * 15 * 92,5^{2} + \frac{1}{12} 9 * 170^{3} =$$

= 51 337 250 + 3 684 750 = 5502 * 10⁴ mm⁴

$$I_z = 2 \frac{1}{12} 15 * 200^3 = 2000 * 10^4 \text{ mm}^4$$

Vergelijking met de tabel op blad [442] leert dat de benaderingsberekening voor I_y een waarde levert die 96,5 % van de preciese uitkomst bedraagt (5502/5696).

Voor I_z bedraagt dit percentage zelfs 99,8 % (2000/2003).

Dit verschillende gedrag wordt veroorzaakt door het feit dat het materiaal in de afronding tussen lijf en flenzen in het eerste geval een veel grotere bijdrage levert dan in het tweede geval.

$$I_{y} = 2 * b t_{2} * \frac{1}{2} (h - t_{2})^{2} + \frac{1}{12} t_{1} (h - 2 t_{2})^{3}$$

$$I_{z} = 2 * \frac{1}{12} t_{2} b^{3}$$

20 SPANNINGSCOMBINATIES Buiging plus Dwarskracht; Dubbele Buiging Buiging plus Normaalkracht; Wringing

20.1 INLEIDING

20.1.1 DEFINITIE VAN DE VEERKRACHTSGEVALLEN

De spanningstoestanden die in staven en liggers kunnen optreden ten gevolge van uitwendige krachten en momenten, worden ook wel aangeduid als veerkrachtsgevallen.

In hoofdstuk 19 hebben we ons beperkt tot de twee belangrijkste en ook de meest eenvoudige veerkrachtsgevallen:

- Een centrische normaalkracht
- Een zuiver buigend moment

In principe kunnen op een doorsnede echter zowel de drie orthogonale componenten van een willekeurig gerichte kracht aangrijpen alsook de drie orthogonale componenten van een willekeurig gericht moment, zie fig. 1.

Het verdient hierbij aanbeveling om de momenten als vectoren uit te zetten met een dubbele pijl, zoals is beschreven in KW-0 [035-3b].

Terwille van een gemakkelijker herkenning is in enkele figuren ook de notatie met een gebogen pijl weergegeven.

Fig. 1 Mogelijke snedekrachten op een doorsnede
a. Een willekeurig gerichte kracht F, aangrijpend in het zwaartepunt van de doorsnede
b. Een willekeurig gericht moment M

20.1.2 TEKEN VAN DE VEERKRACHTSGEVALLEN

Bij evenwichtsbeschouwingen op een constructie of een constructieonderdeel, doet het er in feite niet toe welke richtingen we als positief aannemen, zolang we deze keuze tijdens een vraagstuk maar niet wijzigen. Het is echter handig om de afzonderlijke krachten en momenten positief te noemen als de betreffende vectoren in de richting van de positieve assen wijzen. Hierbij gaan we weer uit van een rechtsdraaiend assenkruis, zie fig. 2a. Dit houdt in: In het horizontale vlak; x-as naar rechts, y-as naar voren, z-as verticaal omlaag. Dit assenkruis mag in elke willekeurige stand worden gedraaid zolang er geen wijziging

optreedt in de onderlinge ligging van de coördinaatassen.

Het is moeilijker om eenheid te verkrijgen in de notatie van de snedekrachten; meer dan eens kunnen we hierbij niet consequent te werk gaan. Voor prismatische staven en liggers zullen we doorgaan met de tekenafspraken die we in [409] hebben toegepast, waarbij in het eerste kwadrant van het assenkruis een vergelijkings-elementje is aangebracht, waarvan drie zijvlakken samenvallen met een coördinaatvlak (2 daarvan zijn gerasterd weergegeven in fig. 2a2). In eerste instantie noemen we normaalkrachten, buigende en wringende momenten *positief* als op de gerasterde vlakjes de vectoren in de richting van de negatieve assen werken, en op de niet gerasterde vlakjes in de richting van de positieve assen, zie fig. 2b, c. Voor de verdere berekening nemen we voorts aan dat de ligger-as samenvalt met de x-as en dat de hoofdassen van de normale doorsnede samenvallen met de y- en de z-as, zie fig. 2a3.

Voor het teken van N en M houdt dit het volgende in: *Positieve normaalkrachten* N zijn – vanuit het staafmootje beschouwd – naar buiten gericht. Ze veroorzaken dus een trekkracht, zie fig. 2b1.

Positieve wringende momenten M_t hebben eveneens naar buiten gerichte momentvectoren, zie fig. 2b2. Wellicht ten overvloede is op het voorste vlakje ook de bijbehorende draairichting ingetekend.

Bij positieve *buigende momenten* M_y (fig. 2c1) heeft de positieve kracht van het koppel een positieve z-coördinaat en de negatieve kracht een negatieve z-coördinaat, zoals is weergegeven in fig. 2d1. Boven de neutrale lijn treden dus drukkrachten op en beneden de neutrale lijn trekkrachten.

Als we voor horizontale belastingen een overeenkomstige gedragslijn aanhouden, dan vinden we bij positieve buigende momenten M_Z (fig. 2c2) echter een negatieve kracht van het koppel bij een positieve y-coördinaat, zie fig. 2d2. Links van de neutrale lijn treden dan trekkrachten op en rechts daarvan drukkrachten.

- Fig. 2 Teken van de veerkrachtsgevallen bij een rechtsdraaiend assenkruis
- a1 Vergelijkings-elementje
- a2 Positieve richting van krachten en koppels
- a3 Assenkruis voor een staaf of ligger
- b1,2 Positieve normaalkracht en wringend moment
- c1,2 Positieve buigende momenten M_y en M_z
- d1,2 M_y en M_z weergegeven als koppels

20.1.3 COMBINATIE VAN EEN AANTAL VEERKRACHTSGEVALLEN

Een aantal veerkrachtsgevallen kan volkomen zelfstandig optreden, andere daarentegen zijn gekoppeld. De maatgevende spanningscombinaties worden meestal veroorzaakt door een combinatie van onafhankelijke veerkrachtsgevallen. We beperken ons tot lijnvormige elementen waarbij de *x*-as samenvalt met de staafas en de hoofdassen voor de kwadratisch oppervlaktemomenten samenvallen met de *y*- en *z*-as, zoals bij de rechthoekige doorsnede van fig. 1a1.

Alleenstaand kunnen voorkomen:

- N_x Centrische normaalkracht; fig. 1a2. Hierdoor zullen normaalspanningen σ_n in de x-richting ontstaan.
- $M_y M_z$ Zuiver buigende momenten; fig. 1b. Hierdoor zullen normaalspanningen σ_b in de x-richting ontstaan.
- M_x Zuiver wringend moment; fig. 1c1. Hierdoor zullen schuifspanningen τ in het y-z-vlak ontstaan. De spanningsverdeling komt in [486] aan bod.

Bij de momenten geeft de term 'zuiver' aan dat het moment langs de staafas constant is.

Nieuw is de introductie van het wringend moment (meestal aangegeven als M_t).

Denk hierbij aan het uitwringen van een dweil of een vaatdoek, of neem zelf een balkje tempex ter hand en verwring het als op de foto, zie fig. 2.

Een vrij eenvoudige combinatie treedt op als de zuiver buigende momenten M_y en M_z gelijktijdig voorkomen, zie fig. 1c2. Men heeft dan nog steeds een zuiver buigend moment waarbij de neutrale lijn door het zwaartepunt van de doorsnede gaat. Maar de neutrale lijn valt nu niet langer samen met een van de hoofdassen van de doorsnede en men spreekt van *dubbele buiging*.

- Fig. 1 Snedekrachten die zelfstandig kunnen voorkomen (alle grootheden positief volgens de tekenafspraken van [453].
- a1 Staaf (ligger) met assenkruis en ligging van de hoofdassen in de dwarsdoorsnede
- a2 Normaalkracht
- b. Buigende momenten
- c1 Wringend moment
- c2 Dubbele buiging

Fig. 2 Vervormingen bij zuivere wringing De staafas blijft recht maar tordeert wel ; normale doorsneden blijven niet langer vlak !

Dwarskrachten

Dwarskrachten veroorzaken in de betreffende doorsnede (in het y-z-vlak) alleen maar schuifspanningen. Dwarskrachten kunnen nooit alleenstaand voorkomen, ze veroorzaken altijd buigende momenten, zie fig. 3b.

- V_z veroorzaakt een moment M_y
- V_y veroorzaakt een moment M_z

Alleen ter plaatse van een momentennulpunt is het mogelijk dat de dwarskracht alleen optreedt, maar dan ook alleen maar in dié snede.

NB: de getekende positieve dwarskrachten in fig. 3b kunnen zowel positieve als negatieve buigende momenten veroorzaken, afhankelijk van de randvoorwaarden van de ligger.

De combinatie buiging plus dwarskracht is het meest voorkomende en ook het belangrijkste belastinggeval. De normaalspanningen (buigspanningen) ten gevolge van het buigend moment en de schuifspanningen ten gevolge van de dwarskracht worden bij de elementaire mechanica vrijwel altijd afzonderlijk beschouwd.

In fig. 3b1 neemt het buigend moment M_y toe in de positieve x-richting. Als we fig. 3b1 een kwart slag naar links draaien dan moeten y en z onderling worden verwisseld en ontstaat voor M_z de situatie van fig. 3b2. Maar hierdoor hebben we de tekenafspraak voor M_z volgens [453] verlaten, vergelijk fig. 2c, d.

We kunnen daarom beter de afspraak aanhouden dat we buigende momenten positief noemen als ze trekspanningen (in x-richting) veroorzaken, gaande vanaf de neutrale lijn in de positieve asrichting van de doorsnede. Raadpleeg ook [431]: Betrekkelijkheid van tekenafspraken !

Fig. 3 Gelijktijdig optreden van snedekrachten

- a. Liggermootje met assenkruis
- b1 Dwarskrachten en buigende momenten ten gevolge van een verticale belasting q_z
- b2 Dwarskrachten en buigende momenten ten gevolge van een horizontale belasting q_y
- c. Buiging al dan niet met dwarskracht gecombineerd met normaalkracht

Wringing

In vele gevallen treden geen wringende momenten op of worden de invloeden verwaarloosd. De schuifspanningsverdeling ten gevolge van wringing kan in vele gevallen afzonderlijk worden beschouwd. Men moet voor wringing echter altijd op zijn hoede zijn. Bij de meeste dunwandige profielen kunnen onverwacht grote rotaties optreden. Zelfs bij grote buigstijfheden in y- en z-richting kan de wringstijfheid toch gering zijn, zie hiertoe 20.7.6 [491].

20.2.1 ALGEMEEN

Bij vrijwel alle momentenlijnen die in KW-2 zijn behandeld, variëert het buigende moment langs de lengte-as van de ligger, zodat daar het veerkrachtsgeval buiging plus dwarskracht optreedt. De invloed van de dwarskracht op de vervormingen blijkt echter zo gering te zijn, dat de buigspanningsverdeling kan worden berekend alsof er in elke doorsnede alleen maar een zuiver buigend moment zou aangrijpen.

De dwarskracht veroorzaakt in de normale doorsnede enkel en alleen maar schuifspanningen. De grootte van deze spanningen is van betrekkelijk ondergeschikte betekenis. Desalnietemin zal een doorsnede de buigende momenten alleen maar effectief kunnen overdragen, als ook de schuifspanningsafdracht is gewaarborgd. Aan dit onderdeel wordt aandacht besteed in 20.6 [478].

Zoals reeds is vermeld, worden de buigspanningsverdeling ten gevolge van M en de schuifspanningsverdeling ten gevolge van V meestal afzonderlijk beschouwd.

Dit heeft de volgende oorzaken waarop we in KW-7 nog terug zullen komen:

- De grootte van de maximale schuifspanningen is veel kleiner dan van de maximale buigspanningen,
- de maximale buigspanningen treden veelal (maar niet altijd) op in andere doorsneden dan de maximale schuifspanningen,
- zelfs als beide maximale spanningen in dezelfde doorsnede optreden dan zijn de maxima op verschillende plaatsen in de doorsnede aanwezig.

Als we over schuifspanningen spreken bij een variërend buigend moment ten gevolge van een verticale belasting, dan bedoelen we daarbij uitsluitend de *verticaal* werkende schuifspanningen ten gevolge van *dwarskracht* in de *normale doorsnede* en zonodig ook de daaruit volgende horizontale schuifspanningen [482-483]. Met de *horizontaal* werkende schuifspanningen in een schuine doorsnede ten gevolge van *buiging alléén* houden we ons in feite nooit bezig. **D** Bij een constant buigend moment treden er schuifspanningen op in alle doorsneden die een hoek α maken met de normale doorsnede. We hebben bij zuivere buiging te maken met een lijnspanningstoestand, zoals is besproken in [410-411]; in elk punt van zo'n doorsnede is de resulterende buigspanning immers evenwijdig aan de as van de ligger.

We kunnen deze resulterende spanning weer ontbinden in een normaalspanningen en een schuifspanning, volgens fig. [410-2]. Beide spanningen verlopen dan lineair over de hoogte. Door de invloed van de schuifspanningen blijven vlakke doorsneden dan ook niet meer vlak, zoals gemakkelijk is te constateren aan het model van een gebogen balkmootje dat een constante kromming bezit, zie fig. 1.

Fig. 1 Model van een liggermootje dat is onderworpen aan een constant buigend momenta. Normale doorsneden blijven vlak

b. Een schuine doorsnede verwringt

20.2.2 BEREKENING VAN DE NORMAALSPANNINGEN TEN GEVOLGE VAN BUIGING

Algemene richtlijnen

- Teken de momentenlijn en bereken de extreme positieve en negatieve momenten
- Bepaal het kwadratisch oppervlaktemoment van de doorsnede om de juiste buigingsas
- Bepaal de extreme buigspanningen in de buitenste vezels van de doorsnede met behulp van de formules [427-(28)]:

$$\sigma = \frac{Mz}{I}$$
 of $\sigma = \frac{M}{W}$

Het bepalen van het kwadratisch oppervlaktemoment kost meestal wat tijd. Ga daarom eerst na of de doorsnede één of meer symmetrie-assen bezit, zodat de richting van de hoofdassen vastligt [437-438].

Controleer vervolgens of het nodig is het zwaartepunt van de doorsnede te bepalen of dat uit symmetrie-overwegingen de neutrale lijn samenvalt met een symmetrie-as [438].

In beide gevallen zijn de kwadratische oppervlakte-momenten snel te bepalen met behulp van de algemene procedure volgens [439], of de variant voor samengestelde rechthoekige doorsneden volgens [448-449].

Voor asymmetrische doorsneden kunnen achtereenvolgens de volgende aanbevelingen worden verstrekt:

- a. Probeer ze te vermijden.
- b. Ga na of de vervormingen in zijdelingse richting wellicht geheel of gedeeltelijk worden verhinderd. Is dit het geval dan kan alsnog van het *y*-*z*-assenkruis gebruik worden gemaakt voor de bepaling van *I*, zie fig. 2.
- c. Als punt b. niet van toepassing is, maak dan voor standaardprofielen gebruik van tabellenboeken voor de doorsnede-grootheden en bestudeer alsnog paragraaf 19.7.3 [442].

- Fig. 2 Mogelijkheden om de procedure voor symmetrische doorsneden met symmetrische belasting toe te passen voor afwijkende situaties
- Betonvloer met randbalk. Een strook van de vloer mag als flens van de randbalk worden beschouwd (de zgn. meewerkende breedte) De bovenzijde van de randbalk kan niet zijdelings verplaatsen
- b1 Gordingen op een symmetrisch dak gekoppeld door trekstangen (halverwege de hoogte)
- b2 Gordingen op een symmetrisch dak gekoppeld door het dakbeschot aan de bovenzijde

In geval b. buigen de gordingen alleen door om hun stijve as, omdat een verplaatsing in zijdelingse richting wordt verhinderd. De krachten in zijdelingse richting worden via de trekstangen of het dakbeschot overgebracht naar de topgording, die een veel grotere belasting krijgt te dragen.

Bij de betonbalk zal men geneigd zijn de invloed van de flens te verwaarlozen en alleen met een rechthoekige doorsnede te rekenen.

Bij de houten gordingen zal men geneigd zijn om de invloed van het dakbeschot te verwaarlozen en de dikte van de gordingen zo groot te kiezen dat de spanningen door de dubbele buiging niet te hoog worden [462].

20.2.3 SPANNINGSVERDELING T-BALK

Uitsluitend verticale belasting

Een betonbalk met een T-vormige doorsnede volgens fig. 1a heeft een overspanning van 12 m en moet behalve het eigen gewicht een gelijkmatig verdeelde belasting overbrengen ter grootte: $q_q = 25$ kN/m'.

Alle afmetingen zijn precies $10 \times zo$ groot als bij de doorsnede van fig. [438-1], zodat we de daar berekende doorsnede-grootheden als volgt met de onderstaande factoren kunnen vermenigvuldigen: $z \times 10$, $A \times 10^2$, $S \times 10^3$, $I \times 10^4$

Oppervlak:	A	=	$300 * 10^3$	mm^2
Zwaartepunt:	$z_{\rm b}$	=	300	mm
Kwadr. opp. mom:	I_y	=	17 * 10 ⁹	mm^4

Belasting eigen gewicht: q_g Veranderlijke belasting: q_q Totale belasting: $q = q_g + q_q$

$$q_{\rm g} = A * \gamma_{\rm beton} = 0.3 \text{ m}^2 * 24 \text{ kN/m}^3 =$$

= 7.2 kN/m'
 $q = 7.2 + 25.0 = 32.2 \text{ kN/m'}$

We berekenen eerst het maximale moment uitsluitend ten gevolge van het eigen gewicht:

$$M_{\text{max}} = 1/8 * q_{\text{g}} l^2 = 1/8 * 7.2 * 12^2 =$$

= 129.6 kNm

Voor de berekening van de spanningen (altijd uitgedrukt in N/mm^2) moet het moment – dat vrijwel altijd wordt berekend in kNm – eerst worden herleid tot Nmm.

1 kN =
$$10^3$$
 N; 1 m = 10^3 mm,
1 kNm = 10^6 Nmm.

De extreme spanningen aan boven- en onderzijde van de doorsnede kunnen worden berekend met behulp van de formules [427-(28)].

In dit geval is het dus noodzakelijk om de ligging van het zwaartepunt te kennen. In de berekening heeft het echter nauwelijks voordelen om eerst de weerstandsmomenten uit te rekenen.

Fig. 1 T-vormige dwarsdoorsnede

- a. Afmetingen
- b. Spanningsverdeling ten gevolge van een verticale (omlaag gerichte) belasting (positief buigend moment M_v)

$$\sigma_{\rm b} = \frac{M_y * z_{\rm b}}{I_y} = \frac{129.6 * 10^6 * 300}{17 * 10^9} = 2,29$$
$$\sigma_{\rm o} = \frac{M_y * z_{\rm o}}{I_y} = \frac{129.6 * 10^6 * 500}{17 * 10^9} = 3,81$$

De maximale spanning treedt op aan de onderzijde en bedraagt: $\sigma_0 = +3,81 \text{ N/mm}^2$. De spanning aan de bovenzijde is gelijk aan: $\sigma_b = 3/5 * \sigma_0 = -2,29 \text{ N/mm}^2$.

Het is weliswaar mogelijk om de afstanden z_0 en z_b in de formules [427-(28)] mèt hun teken in te voeren, maar het is niet gebruikelijk.

Uitsluitend horizontale belasting

We beschouwen vervolgens dezelfde ligger met T-vormige doorsnede, die nu uitsluitend een horizontale belasting moet overbrengen. Deze kan bijvoorbeeld worden veroorzaakt door windkrachten van rechts, zie fig. 2a. Voor een gemakkelijke vergelijking van de hierbij optredende spanningen met die van het vorige geval, gaan we uit van hetzelfde maximale moment als in [458]: $M_{\text{max}} = 129,6$ kNm.

De momentvector valt nu samen met de verticale symmetrie-as van de doorsnede en het kwadratisch oppervlakte-moment kan rechtstreeks worden bepaald ten opzichte van deze as zonder eerst het zwaartepunt behoeven uit te rekenen, vergelijk fig. [438-1b]:

$$I_z = 7,81 * 10^9 \text{ mm}^4$$

De extreme buigspanningen aan de zijkanten van de flens volgen uit:

$$\sigma_{\max} = \frac{M_z * y_1}{I_z} = \frac{129.6 * 10^6 * 375}{7.81 * 10^9} = 6,22$$

De buigspanningen aan de zijkanten van het lijf zijn gelijk aan:

 $\sigma_2 = 125/375 * \sigma_{\text{max}} = 1/3 * 6,22 =$ = 2,07 N/mm²

We hebben ons bij deze berekening nog niet om het teken van het moment of de spanningen bekommerd. Uit de richting van de belasting q_h volgt dat links trekspanningen moeten optreden en rechts drukspanningen.

In fig. 3a en fig. 3b zijn de ruimtelijke spanningsfiguren ten gevolge van M_y en M_z weergegeven. Om het verloop van de spanningen zo duidelijk mogelijk zichtbaar te maken is het nulvlak horizontaal gesitueerd en zijn de trek- en drukspanningen in tegengestelde richting uitgezet ten opzicht van de figuren 1 en 2.

Het geval dat de verticale belasting en de horizontale belasting beide gelijktijdig aangrijpen, veroorzaakt dubbele buiging. Dit wordt besproken in [460].

Fig. 2 Balk met T-vormige dwarsdoorsnede onder horizontale belasting

a. Doorsnede met belasting- en momentvector

b. Spanningsverdeling ten gevolge van M_z

Fig. 3 Het verloop van de normaalspanningen, ruimtelijk uitgezet

- a. Buiging om de y-as (fig. 1)
- b. Buiging om de z-as (fig. 2)

20.3.1 OVERZICHT

Dubbele buiging treedt op als de momentvector niet evenwijdig is met één van de hoofdassen van de doorsnede. Hierbij kunnen zich een aantal gevallen voordoen:

1. De hoofdassen van de (meestal symmetrische) doorsnede liggen weliswaar in het horizontale en het verticale vlak, maar er treedt zowel een verticale belasting op (sommatie van het eigen gewicht en de veranderlijke belasting) als een horizontale belasting (door wind bijv.), zie fig. 1a.

De belastinggevallen worden dan elk afzonderlijk uitgerekend en vervolgens gesuperponeerd, zie [461].

2. Er treedt alleen een verticale belasting op, maar de hoofdassen van de doorsnede zijn geroteerd ten opzichte van het verticale vlak, zie fig. 1b.

De momentvector wordt nu ontbonden langs beide hoofdassen en voor elke momentvector worden de spanningen op de gebruikelijke wijze bepaald. Vervolgens worden de resultaten gesuperponeerd, zie [462].

- Combinaties van de gevallen 1. en 2. Ook hier moeten de momentvectoren weer worden ontbonden langs de hoofdassen van de doorsnede.
- Er treedt alleen een verticale belasting op, maar door de asymmetrie van de doorsnede moet eerst de richting de hoofdassen worden bepaald, met de bijbehorende waarden van *I*". Daarna kan ontbinding langs deze hoofdassen plaatsvinden; zie fig. 1c [440-442].

Let vooral op bij hoekprofielen. Als de benen hiervan verticaal en horizontaal staan, komt men licht in de verleiding om de kwadratische oppervlaktemomenten op te maken om de y-as en de z-as en deze assen als de hoofdassen te beschouwen. In werkelijkheid zullen de hoofdassen altijd een hoek maken met de verticale en horizontale as. Raadpleeg tabellenboeken om veel rekenwerk met de vrijwel altijd optredende fouten te voorkomen. Zie ook [441-442].

Fig. 1 Gevallen van dubbele buiging

- a. Resulterende belastingvector niet evenwijdig aan de hoofdassen in y- en z-richting
- b. Belastingvector in z-richting, maar hoofdassen geroteerd ten opzichte van het y-z-assenkruis
- c. Belastingvector in z-richting, de richting van de hoofdassen moet afzonderlijk worden berekend, c.q. aan tabellenboeken worden ontnomen

Fig. 2 Twee gekoppelde asymmetrische hoekprofielen leveren tezamen weer een symmetrisch profiel

Indien twee hoekprofielen plaatselijk zodanig zijn gekoppeld dat buiging om een scheve as wordt verhinderd, dan heeft men een samengesteld profiel met één symmetrie-as verkregen, waarbij de hoofdassen weer evenwijdig zijn aan de y- en z-as, zie fig. 2.

20.3.2 HORIZONTALE EN VERTICALE BELASTING TEZAMEN

Om het effect te doorzien van het gelijktijdig aangrijpen van een verticale en een horizontale belasting, beschouwen we weer de doorsnede waarvoor in [458-459] de spanningen zijn berekend voor elk belastinggeval afzonderlijk. Om het spanningsverloop te kunnen tekenen, dienen de spanningen in alle hoekpunten van de doorsnede bekend te zijn. In principe kan men dan gebruik maken van de algemene formule:

$$\sigma = \frac{M_y * z}{I_y} + \frac{M_z * y}{I_z}$$
(1)

Maar als we puur algebraïsch te werk willen gaan, door zowel de momenten als de afstanden y en z een teken te geven volgens [453] (waarbij de kwadratische oppervlaktemomenten altijd als positieve grootheden worden ingevoerd), dan vinden we onjuiste uitkomsten.

Het is dan eenvoudiger om voor elk van de afzonderlijke belastinggevallen de spanningen in de hoekpunten te bepalen aan de hand van de draairichting van het moment en deze spanningen in de doorsnede te noteren, zie fig. 3a, b. Vervolgens kunnen deze spanningen in een derde doorsnede-figuur worden gesommeerd; fig. 3c.

Om de ligging van de neutrale lijn te bepalen - die uiteraard door het zwaartepunt van de doorsnede blijft gaan-is in fig. 3d langs de twee van belang zijnde zijranden van de doorsnede het spanningsverloop uitgezet. In fig. 4 is het spanningsverloop ruimtelijk weergegeven. Als men met behulp van formule (1) de spanningen berekent in de punten A-B-C-D, dan kan grafisch de spanning in elk punt

a. M_{γ} ;

- Fig. 3 Numerieke waarde van de spanningen in de hoekpunten van een T-vormige doorsnede
- Spanningen ten gevolge van M_{ν} a.
- b. Spanningen ten gevolge van M_z
- c. Superpositie van de spanningen
- d. Spanningen langs 2 randen van de doorsnede uitgezet om de neutrale lijn te kunnen bepalen

20.3.3 VERTICALE BELASTING BIJ GEROTEERDE HOOFDASSEN VAN DE DOORSNEDE

Het meest bekende geval zijn gordingen die zijn aangebracht op een kapspant voor een woning met een schuin dak, zie fig. 1a. De belasting wordt veroorzaakt door de zwaartekracht en werkt dus verticaal. Om de gedachte te bepalen wordt aangenomen dat het maximale buigende moment gelijk is aan $M_y = 3,5$ kNm.

De afmetingen van de gording zijn gelijk aan:

$$b \times h = 95 \times 195 \text{ mm}^2$$

 $W_{\text{max}} = 1/6 * 95 * 195^2 = 602 * 10^3 \text{ mm}^3$
 $W_{\text{min}} = 1/6 * 195 * 95^2 = 293 * 10^3 \text{ mm}^3$

Indien de gording gewoon verticaal wordt opgesteld bedragen de maximale buigspanningen:

$$\sigma = \frac{M_y}{W_{\text{max}}} = \frac{3.5 * 10^{\circ} \text{ (Nmm)}}{602 * 10^{3} \text{ (mm}^{3})} = 5.81 \text{ N/mm}^{2}$$

Het dak maakt een hoek α met de horizontaal. Het buigend moment M_y wordt nu ontbonden langs de hoofdassen van de gording, hetgeen de volgende moment-componenten oplevert, zie hiertoe fig. 1b:

 $M''_y = M_y \cos \alpha$ en $M''_z = M_y \sin \alpha$

Indien tg $\alpha = 0.75$ volgt:

 $\cos \alpha = 0.80$ en $\sin \alpha = 0.60$

De spanningen aan de boven- en onderzijde van de doorsnede volgen uit:

$$\sigma_1 = \frac{M_y''}{W_{\text{max}}} = \frac{3.5 * 10^6 * 0.8}{602 * 10^3} = 4,65 \text{ N/mm}^2$$

De spanningen aan de zijkanten van de doorsnede volgen uit:

$$\sigma_2 = \frac{M_z''}{W_{\min}} = \frac{3.5 * 10^6 * 0.6}{293 * 10^3} = 7.17 \text{ N/mm}^2$$

De spanningen σ_1 en σ_2 zijn voor elk belastinggeval afzonderlijk weergegeven in fig. 2.

Fig. 1 Buigend moment in een gording

- a. Afmetingen en ligging van de doorsnede, met de ontbondenen van de belastingvector langs de hoofdassen
- b. Ontbinden van de moment-vector langs de hoofdassen

Fig. 2 Spanningsverloop voor beide belastinggevallen a. Spanningen ten gevolge van M''_z

b. Spanningen ten gevolge van M''_v

In fig. 1 en 2 werkt de moment-vector in de getekende draairichting (kurketrekker-regel) op het daarachter liggende deel van de ligger. Hieruit volgt waar trek- en drukspanningen zullen optreden.

 \sim

Als men hier moeite mee heeft, dan kan men de vector die de verticale belasting aangeeft, ook ontbinden langs de hoofdassen van het profiel, zie fig. 1a. Bij een ligger op twee steunpunten treedt dan trek op aan de zijde waar de betreffende component van de belasting heenwijst.

Om de uiteindelijke spanningsverdeling te vinden zijn de spanningen in de vier hoekpunten van de gording voor beide belastinggevallen, nogmaals weergegeven in fig. 3a, b.

Superpositie van de twee belastinggevallen levert dan de spanningen op in de vier hoekpunten van de gording, zie fig. 3c.

In fig. 3d zijn de spanningen langs de omtrek van het profiel weergegeven, waarbij de trekspanningen naar buiten zijn uitgezet. De neutrale lijn is dan gemakkelijk te tekenen.

Duidelijk blijkt de schuine ligging van de neutrale lijn èn het optreden van veel hogere trekspanningen dan in het geval van de verticaal staande gording.

De extreme spanningen blijken nu gelijk te zijn aan 11,82 N/mm² in plaats van 5,81 N/mm², dus meer dan twee maal zo hoog.De spanningen blijken ook veel hoger te zijn, dan men bij hout gewoonlijk toelaat. Deze spanning bedraagt namelijk globaal 7 N/mm² in het gebruiksstadium.

- Fig. 3 Spanningen in de vier hoekpunten van de rechthoekige doorsnede
- a. Spanningen σ_1 ten gevolge van M''_y
- b. Spanningen σ_2 ten gevolge van M''_z
- c Superpositie van σ_1 en σ_2
- d. Spanningen uitgezet langs drie buitenranden van de doorsnede om de ligging van de neutrale lijn te bepalen

20.4.1 ALGEMEEN

Bij (horizontale) liggers treden maar zelden normaalkrachten op. Als normaalkrachten voorkomen, dan hebben we ze meestal zelf aangebracht, zoals bij liggers in voorgespannen beton. Verticale elementen, zoals kolommen en wanden, zijn in eerste instantie bedoeld om de verticale belastingen via normaalkrachten naar omlaag af te dragen.

Vrijwel altijd zullen ze tegelijkertijd meer of minder grote buigende momenten moeten opnemen. De normaalspanningen die uit beide belastinggevallen volgen moeten altijd worden gesuperponeerd.

Bij steenachtige materialen zonder wapening (metselwerk en ongewapend beton) komen de drukspanningen ten gevolge van de over te brengen normaalkracht ons goed van pas om de optredende buigtrekspanningen geheel of gedeeltelijk te compenseren. Dit soort materialen kan immers maar in zeer beperkte mate trekspanningen opnemen.

In eerste instantie zullen we echter uitgaan van materialen die even goed trek als druk kunnen opnemen. Om de gedachte te bepalen, zullen we hierbij gebruik maken van horizontale liggers, waarop zowel een centrische normaalkracht aangrijpt als een buigend moment. De schuifspanningen ten gevolge van de dwarskracht worden hierbij nog steeds niet beschouwd [478].

Normaalkracht

De normaalkracht grijpt aan in het zwaartepunt van de doorsnede; de normaalspanningen zijn gelijkmatig over de doorsnede verdeeld, zoals is uiteengezet in [416].

Buigend moment

Als een buigend moment op de doorsnede aangrijpt, ontstaat er een neutrale lijn die samenvalt met een zwaartelijn van de doorsnede. De spanningen zijn recht evenredig met de afstand tot de neutrale lijn. Ligging van de neutrale lijn en grootte van de spanningen hangt mede af van de doorsnedevorm en de richting van de momentvector, zoals is uiteengezet in hoofdstuk 19.

Normaalkracht + buigend moment

Als beide veerkrachtsgevallen gelijktijdig optreden, dan kunnen de normaalspanningen worden gesuperponeerd (= algebraïsch opgeteld). Dit houdt in dat ter plaatse van de oorspronkelijke neutrale lijn (ten gevolge van buiging alleen), altijd de (gemiddelde) normaalspanning zal optreden.

Vooruitlopend op de wat systematischer behandeling in [465] is in fig. 1 voor de T-balk van [461-4] de superpositie weergegeven van een buigend moment volgens [461-4a] en een centrische normaalkracht (druk). De oorspronkelijke neutrale lijn van fig. 1a ondergaat dan alleen een evenwijdige verschuiving.

c. Superpositie: $M_v + N_x$

20.4.2 SUPERPONEREN VAN NORMAALSPANNINGEN EN BUIGSPANNINGEN

Strikt genomen zou men moeten spreken van:

- 1. normaalspanningen ten gevolge van normaalkrachten
- 2. normaalspanningen ten gevolge van buigende momenten

Het is echter algemeen gebruikelijk om de volgende veel kortere termen te gebruiken:

1. Normaalspanningen (uitsluitend t.g.v N)

2. Buigspanningen (uitsluitend t.g.v. *M*) In het vervolg zullen we meestal van deze laatste terminologie uitgaan.

Indien op een doorsnede de grootheden N en Mgelijktijdig aangrijpen, zoals in fig. 2 is weergegeven, moeten de normaal- en buigspanningen worden gesuperponeerd, zie fig. 3. We gaan er gemakshalve vanuit dat de ligger een verticaal symmetrievlak bezit en de belasting op de ligger verticaal omlaag is gericht zodat de neutrale lijn loodrecht op het vlak van tekening staat.

Om de extreme spanningen aan de bovenzijde en onderzijde van de doorsnede in één formule te kunnen weergegeven, schrijven we:

$$\sigma = \frac{N}{A} \pm \frac{M}{W} \tag{2}$$

Het plusteken geldt voor de vezels waar trek optreedt ten gevolge van een positief buigend moment. Voor een ligger op twee steunpunten is dit dus de ondervezel.

Als N en M beide positief zijn, zal in de ondervezel dus altijd trek optreden, het minteken in de formule geldt dan voor de bovenvezel.

In fig. 3a zijn de spanningen ten gevolge van normaalkracht en buiging elk afzonderlijk weergegeven en vervolgens opgeteld.

In fig. 3b zijn de buigspanningen echter rechtstreeks uitgezet ten opzichte van de waarde van de normaalspanning.

Fig. 2 Moot van een ligger onderworpen aan normaalkrachten en buigende momenten

waarde van de normaalspanning

Let op:

 σ_n = constante (normaal) spanning t.g.v. N

 σ_b = extreme (normaal) spanning t.g.v. M

Onthoudt de volgend belangrijke regel: Ter plaatse van de oorspronkelijke neutrale lijn (ten gevolge van buiging alléén) treedt na superpositie altijd de gemiddelde spanning op: $\sigma = N/A$

20.4.3 KOLOM ONDER INVLOED VAN VERTICALE EN HORIZONTALE BELASTING

Een kolom wordt aan zijn boveneind belast door een vertikale kracht F_V en een horizontale kracht F_H De daaruit volgende snedekrachten N en V zijn weergegeven in fig. 1a.

Het verloop van N, V en M over de hoogte van de kolom is weergegeven in fig. 1b.

Voor een beter overzicht blijft het eigen gewicht van de kolom buiten beschouwing.

De numeriek gegevens luiden:

doorsnede: $a \times b = 300 * 200 \text{ mm}^2$ hoogte: h = 3,0 m = 3000 mmkrachten: N = 240 kNV = 6 kNLet op: de symbolen *a* en *h* bebben bier

Let op: de symbolen a en h hebben hier niet de gebruikelijke betekenis; met andere woorden, pas formules nooit klakkeloos toe!

Gevraagd:

De verdeling van de (normaal) spanningen in de doorsneden: O - I - II - III, op onderlinge afstanden van 1 m van elkaar gelegen.

Oplossing:

We beschouwen de spanningsverdeling ten gevolge van N en ten gevolge van M eerst elk afzonderlijk. Daarna superponeren we beide spanningsverdelingen.

Normaalkracht

De spanning ten gevolge van de normaalkracht N is constant over de gehele lengte van de kolom. Hierbij doen we voor de berekening net alsof de kracht direct geheel gelijkmatig is verdeeld over de doorsnede en zich niet eerst behoeft te spreiden.

$$\sigma_{\rm n} = \frac{N}{A} = \frac{-240 * 10^3 \text{ (N)}}{200 * 300 \text{ (mm}^2)} = -4 \text{ N/mm}^2$$

- Fig. 1 Kolom onder invloed van een verticale en een horizontale belasting in de top
- a. Zijaanzicht kolom
- b1 Normaalkrachtenlijn
- b2 Dwarskrachtenlijn ($4 \times$ te breed getekend ten opzichte van de normaalkrachtenlijn)
- b3 Momentenlijn
- c. Doorsnede van de kolom

Buigend moment

Het buigend moment heeft een lineair verloop over de hoogte:

M = V * x

De extreme buigspanningen aan de zijranden van de doorsnede volgen uit :

 $\sigma = M/W$

We berekenen de buigspanningen in doorsnede I op een afstand van 1 m vanaf de bovenzijde van de kolom.

$$\sigma_{\rm b} = \frac{M}{W} = \frac{6 * 10^3 \,({\rm N}) * 10^3 \,({\rm mm})}{\frac{1}{6} * 200 * 300^2 \,({\rm mm}^3)} = \pm 2 \,{\rm N}/{\rm mm}^2$$

In de doorsneden II en III zijn de buigspanningen dan resp. 2 en $3 \times zo$ groot.

In fig. 2 is voor de vier doorsneden de superpositie van de normaalspanningen en de buigspanningen weergegeven.

Hierbij blijken zich in de vier doorsneden vier kenmerkende gevallen voor te doen:

- 0 De spanningen zijn gelijkmatig verdeeld over de gehele doorsnede; fig. 2b. Er treden alleen drukspanningen op.
- I De drukspanningen variëren lineair over de doorsnede; fig. 2c.
- II De drukspanningen variëren lineair over de doorsnede, maar aan één buitenrand van de doorsnede zijn ze juist gelijk aan nul; fig. 2d.
- III De spanningen variëren lineair over de doorsnede, maar aan één zijde van de doorsnede treden over een gedeelte van de doorsnede trekspanningen op; fig. 2e.

Ter plaatse van de neutrale lijn (bepaald voor het geval van buiging alléén), treedt dus in alle gevallen de gemiddelde drukspanning op: $\sigma_n = -4$ N/mm².

Bij het tekenen van het spanningsverloop in een doorsnede, zijn we in principe vrij in de keuze van de richting waarin trek- en drukspanningen worden uitgezet.

De enige regel die we in het dictaat aanhouden is de volgende. Als bij de spanningsfiguur ook een stukje van de ligger in zijaanzicht wordt weergegeven, dan worden de spanningen getekend in de richting zoals ze van buitenaf op de beschouwde doorsnede werken, zie fig. 3.

Daar is een mootje van een balk weergegeven, dat is onderworpen aan een constant buigend moment. Als we het spanningsverloop op de zijvlakjes tekenen, worden de drukspanningen op het linker zijvlakje dus naar rechts uitgezet en op het rechterzijvlakje naar links. Voor de trekspanningen geldt het omgekeerde.

- Fig. 2 Spanningsverdeling in enkele doorsneden van de kolom van fig. 1
- a. Boven a nzicht kolom met aangrijpingspunten van V en N
- b.- e. Superpositie van normaalspanningen en buigspanningen in de doorsneden 0 t/m III

Fig. 3 Buigspanningen – behorende bij een positief buigend moment – uitgezet op de zijvlakjes van een mootje van een balk

20.4.4 INTRODUCTIE DRUKLIJN

Het begrip *druklijn* speelt bij de vormgeving van bogen en spanten een grote rol. De term wordt vrij gemakkelijk gehanteerd, maar de betekenis en werking wordt lang niet door iedereen volledig doorzien. Ter introductie grijpen we terug op fig. [466-1]; een kolom waar een schuingerichte kracht in de top aangrijpt, die weer wordt ontbonden in F_V en F_H .

In fig. 1a gaan we uit van hetzelfde belastingsschema, als enige verschil kiezen we de horizontale component $F_{\rm H}$ nu $6 \times zo$ groot als voorheen.

Bij de berekening van de spanningen in een normale doorsnede kunnen we – evenals in [466-467] – op de gebruikelijke manier te werk gaan, zie fig. 1b.

De kracht F in de top van de kolom wordt ontbonden in de componenten $F_{\rm V}$ en $F_{\rm H}$.

In de beschouwde doorsnede worden de daaruit volgende snedekrachten N, V en M bepaald, zoals ze werken op het onderste deel van de kolom.

De verdeling van de normaalspanningen in de doorsnede wordt vervolgens voor elke snedekracht afzonderlijk berekend. Tenslotte worden de normaalspanningen tengevolge van N en M gesuperponeerd.

We brengen in deze procedure nu een kleine wijziging aan. We ontbinden de kracht F niet langer ter plaatse van zijn aangrijpingspunt op de kolom, maar verplaatsen deze kracht eerst langs zijn werklijn tot hij het vlak van de beschouwde normale doorsnede snijdt in punt S, zie fig. 1c. Aangezien F de enige kracht is, die op het afgesneden gedachte deel van de kolom werkt, mag dit zonder meer.

Pas in punt S ontbinden we F weer in F_V en F_H . Vervolgens gaan we na welke invloeden deze krachten op de beschouwde doorsnede uitoefenen. De kracht F_H kan zonder meer langs zijn werklijn worden verplaatst en levert de dwarskracht V. De kracht F_V moet echter door invoering van een koppel worden verplaatst naar het zwaartepunt van de doorsnede. De verplaatste kracht F_V vormt dan de normaalkracht N, en het koppel het buigend moment $M = F_V * z$.

- Fig. 1 Introductie druklijn
- a. Kolom met schuingerichte kracht in de top
- b. Gebruikelijke wijze voor het bepalen van de snedekrachten
- c. Verplaatsen van de kracht langs zijn werklijn naar de betreffende snede
- d. Verplaatsen van de componenten van de kracht naar het zwaartepunt van de doorsnede

Vergelijken we nu de snedekrachten volgens beide methoden dan vinden we het volgende. (vergelijk fig. 1b met fig. 1d; let op, *x*-as langs de staafas):

Methode I	Methode II
$N = F_{\rm V}$	$N = F_{\rm V}$
$V = F_{\rm H}$	$V = F_{\rm H}$
$M = F_{\rm H} * x$	$M = F_{\rm V} * z$

Bij de normaalkracht en de dwarskracht zijn de uitkomsten zonder meer gelijk, bij de momenten zijn ze echter anders geschreven.

Uit fig. 1a en 1c volgt:

$$\operatorname{tg} \alpha = \frac{z}{x} = \frac{F_{\mathrm{H}}}{F_{\mathrm{V}}}$$

zodat geldt:

$$F_{\rm V} * z = F_{\rm H} * x$$

In woorden: beide momenten zijn gelijk.

Het snijpunt S van de werklijn van de kracht F met het verlengde van de normale doorsnede zullen we aanduiden als het *drukpunt*.

De verbindingslijn van alle drukpunten van de opeenvolgende normale doorsnede noemen we dan de *druklijn*.

In het voorbeeld valt de druklijn samen met de werklijn van de kracht F en lijkt de definitie nodeloos omslachtig.

Indien er op het afgesneden gedachte liggerdeel echter meer krachten met verschillende aangrijpingspunten werken, dan moet elke normale doorsnede een andere resulterende kracht over-

brengen, elk met zijn eigen werklijn [KW-1]. In dergelijke gevallen kunnen we de druklijn alleen maar definiëren als voorheen is aangegeven; namelijk als de verbindingslijn van de opeenvolgende drukpunten. Dergelijke belastingen kunnen bijv. bestaan uit een gelijkmatig verdeelde horizontale belasting op de kolom (windkrachten) of uit het eigen gewicht van de kolom. Beide belastingen worden soms elk afzonderlijk beschouwd en soms gezamenlijk.

Druklijn bij een muur of kolom bij verticale plus horizontale belasting

We beschouwen een muur of kolom onder eigen gewicht met één horizontale puntlast in de top.

Om de gedachte te bepalen gaan we uit van een kolom, die is opgebouwd uit grote natuurstenen blokken. Het gewicht van elk blok is zodanig getekend dat de kracht per blok juist de hoogte van het blok heeft, zie fig. 2a.

We bepalen nu achtereenvolgens de resultante van de kracht die via een voeg op de daaronder liggende blokken wordt overgedragen, en we werken van boven naar beneden, zie fig. 2b.We zien dan al gauw dat elk opeenvolgend drukpunt precies dezelfde afstand *e* tot de verticale zwaartelijn van de kolom heeft. De druklijn blijkt een verticale lijn te zijn op een constante afstand van de aslijn van de kolom, zoals is getekend in fig 2c.

Als behalve de horizontale kracht in de top ook nog een verticale kracht aangrijpt, dan wordt de druklijn een gebogen lijn, die langzaam nadert tot de voorgaande lijn die geldt *zonder* de extra bovenbelasting, zie fig. 2d.

d. Druklijn bij één extra verticale kracht in de top

20.4.5 EXCENTRISCH BELASTE RECHTHOEKIGE DOORSNEDE

De ligging van de druklijn is vooral illustratief zolang die nog binnen de doorsnede ligt. We komen daar in [476] op terug. In fig. 1 gaat de druklijn in de top van de kolom door het zwaartepunt van de doorsnede (met afmetingen $b \times h$). Alleen hier is de doorsnede centrisch belast. Alle andere doorsneden zijn excentrisch belast. De normaalkracht (ter grootte F_V) bezit daar een excentriciteit e ten opzichte van het zwaartepunt van de betreffende doorsnede.

Ter wille van de eenvoud nemen we aan dat het aangrijpingspunt van F_V op een van de hoofdassen ligt. Voor de afleiding van de formule is het voorts wenselijk om F_V als een trekkracht in te voeren. De dwarskracht F_H wordt weer buiten beschouwing gelaten. We kunnen de indices dan weg laten en beschouwen F als een verticale kracht. Deze situatie is weergegeven in fig. 2.

Als we de kracht F naar het zwaartepunt verplaatsen vinden we als snedekrachten:

$$N_x = +F \tag{3}$$

$$M_y = +F * e_z \tag{4}$$

De normaalkracht is positief omdat er trek op de doorsnede wordt uitgeoefend en het buigende moment is positief omdat er trekspanningen σ_{xx} ontstaan voor positieve waarden van z [455].

We substitueren de formules (3) en (4) nu in formule [465-(2)], waarbij we verder geen rekening behoeven te houden met de diverse indices. We vinden dan:

$$\sigma = \frac{N}{A} \pm \frac{M}{W} = \frac{+F}{bh} \pm \frac{F*e}{\frac{1}{6}bh^2}$$

ofwel

$$\sigma = \frac{F}{bh} \left[1 \pm \frac{6e}{h} \right] \tag{5}$$

1

Fig. 1 De druklijn kan zowel binnen als buiten de doorsnede liggen

Fig. 2 Voor de afleiding van de formules wordt uitgegaan van een verticale trekkracht F die door een van de hoofdassen gaat

Aangezien de eerste term achter het gelijkteken de gemiddelde spanning voorstelt, kunnen we voor (5) ook schrijven:

$$\sigma_{1,2} = \sigma_{\text{gem}} (1 \pm \frac{6 e}{h})$$
 (5a)

Om enig gevoel te verkrijgen welke invloed de excentriciteit van de kracht heeft op de normaalspanningsverdeling, kan de onderstaande tabel worden geraadpleegd.

Hierin zijn voor een rechthoekige doorsnede – voor enkele waarden van e – de bijbehorende extreme normaalspanningen aan de rand van de doorsnede vermeld {formule (5a)}.

Alle spanningen zijn uitgezet ten opzichte van de gemiddelde spanning, zodat in feite alleen de numerieke waarde van de vorm tussen () van formule (5a) is uitgezet.

е	$rac{\sigma_{1,2}}{\sigma_{ m gem}}$	$rac{\sigma_1}{\sigma_{ m gem}}$	$rac{\sigma_2}{\sigma_{ m gem}}$	
0	(1 ± 0)	+ 1	+1	
h/6	(1 ± 1)	+ 2	0	
h/3	(1 ± 2)	+ 3	-1	
h/2	(1 ± 3)	+ 4	-2	

De bijbehorende spanningsfiguren zijn weergegeven in fig. 3c. Het is duidelijk zichtbaar dat de spanning ter plaatse van de oorspronkelijke neutrale lijn, steeds gelijk blijft aan de gemiddelde spanning.

Bij kleine excentriciteiten treden over de gehele doorsnede nog trekspanningen op. Bij excentriciteiten die groter zijn dan e = h/6, treden zowel trek- als drukspanningen op.

Bij toenemende excentriciteit komt de werkelijke neutrale lijn ($\sigma = 0$) steeds dichter te liggen bij de neutrale lijn voor buiging alléén.

Zuivere buiging kan men dan beschouwen als een zeer kleine kracht die aangrijpt op een zeer grote afstand; ofwel een kracht die nadert tot nul op een afstand die nadert tot oneindig.

- Fig. 3 Spanningsverdeling bij een rechthoekige doorsnede bij toenemende excentriciteit van de trekkracht
- a. Zijaanzicht staaf
- b. Staafdoorsnede met de successievelijke aangrijpingspunten van de kracht F
- c. Spanningsdiagrammen bij toenemende excentriciteit

20.4.6 BEPALING VAN *M* EN *N* UIT HET SPANNINGSVERLOOP

Bij het bepalen van de snedekrachten uit het spanningsverloop kunnen we zuiver formeel te werk gaan met behulp van formule [461-(1)], als we daar het spanningsaandeel ten gevolge van de normaalkracht nog aan toevoegen; zie [474-(6)]. We moeten dan wel bijzonder opletten om niet met de tekens in de war te raken. De volgende werkwijze is daarom meer aan te bevelen.

We bepalen allereerst de grootte van de spanning ter plaatse van het zwaartepunt van de doorsnede. Hieruit volgt de grootte van σ_n , dus ook de grootte van de normaalkracht en het teken:

 $N = A * \sigma_n$

Als we dit gelijkmatige spanningsaandeel van de spanningsfiguur aftrekken, houden we het buigspanningsaandeel over. We kennen dan de ligging van de neutrale lijn en de grootte van de extreme spanningen.

Als het een beetje meezit, valt de neutrale lijn langs een van de hoofdassen van de doorsnede. Met behulp van formule [465-(2)] is dan ook de grootte van het buigend moment te bepalen evenals het teken.

Voorbeeld:

Op de driehoekige doorsnede van fig. 1a werkt de getekende spanningsverdeling.

Gevraagd:

Door welke snedekrachten wordt deze spanningsverdeling veroorzaakt.

Analyse:

Als alleen een centrische normaalkracht zou aangrijpen, zouden de spanningen gelijkmatig moeten zijn verdeeld. Indien alleen een buigend moment zou aangrijpen, zouden de spanningen lineair moeten verlopen en zou bovendien de spanning ter plaatse van het zwaartepunt O gelijk aan nul moeten zijn.

Uit de figuur blijkt dat de spanningen weliswaar lineair verlopen maar dat de spanning ter plaatse van het zwaartepunt O ongelijk aan nul is. Er moet dus een combinatie van N en M aangrijpen (normaalkracht + buigend moment).

Berekening

De gemiddelde spanning σ_n treedt op ter plaatse van de neutrale lijn (bepaald voor buiging alléén). Uit de figuur volgt:

$$\sigma_n = 1/3 * \sigma_1$$

De normaalkracht N is dan gelijk aan:

$$N = \sigma_{\rm n} * A = 1/3 * \sigma_1 * 1/2 * bh$$
 (trek)

De buigspanningsfiguur is apart overgetekend in fig. 1b2. De grootte van het buigend moment kan nu gemakkelijk worden bepaald met behulp van de formules [427-(28b)] en [435-(35b)].

$$M = \frac{\sigma * I}{z} = \frac{\frac{2}{3} \sigma_1 * \frac{1}{36} b h^3}{\frac{h}{3}} = \frac{1}{18} \sigma_1 b h^2$$

Neemt men de spanning aan de top van de driehoek dan vindt men uiteraard hetzelfde resultaat; de verhouding σ/z blijft immers constant.

In dit soort gevallen levert het geen voordelen om eerst het weerstandsmoment te berekenen. We kunnen het beste direct van de basisformule uitgaan:

$$\sigma = \frac{M * z}{I}$$

Fig. 1 Driehoekige doorsnede met gelijke maar tegengesteld gerichte extreme spanningen
a. Doorsnede met spanningsverloop in z-richting
b. Het afsplitsen van de normaalspanningen levert het buigspanningsverloop

20.4.7 RECHTHOEK: BEPALING VAN DE KRACHT EN DE EXCENTRICITEIT UIT DE SPANNINGSVERDELING

Indien bij een rechthoekige doorsnede de spanningsverdeling is gegeven kan omgekeerd de daarbij behorende kracht met zijn eventuele excentriciteit worden berekend. Het probleem zal zich bij spanningen meestal niet in deze vorm voordoen, maar voor enkele andere problemen kan deze berekening wel handig zijn. Hiertoe gebruiken we weer formule [470-(5a)].

Analytische oplossing

Voorbeeld, zie fig. 1

Afmetingen doorsnede: $b \times h = 50 \times 180 \text{ mm}^2$ Extreme spanningen: $\sigma_1 = 5 \text{ N/mm}^2$; $\sigma_2 = 1 \text{ N/mm}^2$ $\sigma_{\text{gem}} = 1/2 * (5+1) = 3 \text{ N/mm}^2$

 $F = b * h * \sigma_{\text{gem}} = 50 * 180 * 3 = 27\,000$ N = 27 kN

Voor de bepaling van de excentriciteit kunnen we formule [470-(5a)] gebruiken, het plusteken behoort dan bij de algebraïsch grootste spanning: А

Fig.1 Rechthoekige doorsnede met lineair verlopende normaalspanningen over de hoogte; bepaling van de kracht F met de bijbehorende excentriciteit e

Grafische oplossing

De grootte van de kracht moet analytisch worden berekend. Maar de ligging van de werklijn kan zeer eenvoudig grafisch worden bepaald, fig. 3 (toelichting in KW-1). Hiertoe moeten de volgende handelingen worden verricht:

- zet het varierende spanningsverloop uit langs de betreffende zijde van de rechthoek, zie fig. 2b1,
- verdeel deze zijde van de rechthoek in drie gelijke stukken, zie fig. 2a (punten A, B, C, D).
- verbindt de extreme spanningen elk met het dichtstbijzijnde deelpunt; (σ_1 met C, σ_2 met B), zie fig. 2b1
- bepaal het snijpunt S van beide lijnen en laat vanuit S een loodlijn neer op de zijde van de rechthoek,
- deze loodlijn is dan de werklijn van F.

In fig. 2c hebben we de werklijn van F een kenmerkende plaats in een van de vier deelpunten gegeven. Uit de grafische constructie blijkt, dat er dan in een van de andere deelpunten een spanning optreedt, die gelijk is aan nul. Let op: zowel de formules als de grafische constructie in [475] gelden alleen voor rechthoekige doorsneden.

Fig. 2 Grafische bepaling van de ligging van de resultante uit de spanningsverdeling, zie KW-1 Verdeling van de hoogte in drie gelijke delen a. b. Uitvoering van de grafische constructie b1; b2 alleen drukspanningen; druk- èn trekspanningen

- c. Twee bijzondere posities van de werklijn van F
- 473

С

c1; c2 in een kernpunt; op de rand van de doorsnede

20.4.8 EXCENTRISCHE KRACHT GRIJPT AAN BUITEN DE HOOFDASSEN

Zolang de kracht aangrijpt op een van de twee hoofdassen hebben we te maken met *enkele* buiging. Als de kracht echter daarbuiten aangrijpt hebben we te maken met dubbele buiging, zoals is besproken in [460] t/m [463].

In fig. 1 is zo'n geval weergegeven. We verplaatsen de kracht F nu niet rechtstreeks naar het zwaartepunt, maar via de z-richting en de yrichting. Hierdoor voeren we dus de volgende momenten in:

$$M_y = F * e_z$$
$$M_z = F * e_y$$

De spanningen volgen dan als superpositie van drie gevallen. Bij een rechthoekige doorsnede worden de betreffende spanningen aangegeven door:

$$\sigma_{n} = \frac{F}{b_{y} b_{z}} \quad (\text{ten gevolge van } N)$$

$$\sigma_{b} = \frac{6 F e_{z}}{b_{y} b_{z}^{2}} \quad (\text{ten gevolge van } M_{y})$$

$$\sigma_{b} = \frac{6 F e_{y}}{b_{z} b_{y}^{2}} \quad (\text{ten gevolge van } M_{z})$$

Als in een dergelijk geval de spanningsverdeling wordt gevraagd, ook al is het maar in één punt, lijkt het verreweg het handigste om de drie spanningsfiguurtjes te tekenen – zo nodig ruimtelijk – en vervolgens in de vier hoekpunten de spanningen te superponeren. Bepaal hierbij het teken van de spanningen aan de hand van de richting van de kracht F en de draairichting van de ingevoerde momenten M_y en M_z .

Fig. 1 Door het verplaatsen van de excentrische trekkracht naar het zwaartepunt van de doorsnede worden twee (positieve) buigende momenten geïntroduceerd. Dat wil zeggen: trekspanningen σ_{xx} in de positieve y-en z-richting

Algemene spanningsformule

Ook voor het meest algemene geval kan de spanningsverdeling in één formule worden samengevat, die is weergegeven als formule (6). Het is in wezen een combinatie van de formules [461-(1)] en [465-(2)].

$$\sigma_{xx} = \frac{F_x}{A} \pm \frac{(F_x * e_z) z}{I_y} \pm \frac{(F_x * e_y) y}{I_z}$$
(6)

De x-as ligt langs de ligger- of staafas. Het assenkruis y-z is de hoofdrichtingen van de doorsnede aangebracht.

Het beschouwde punt heeft de coördinaten y, z.

20.5 EXCENTRISCH GEDRUKTE DOORSNEDEN

20.5.1 ALGEMEEN

In de bouw wordt veel gebruik gemaakt van steenachtige materialen; voornamelijk beton en metselwerk. Dit soort materialen is veel beter in staat om drukkrachten op te nemen dan trekkrachten. De treksterkte van beton bedraagt ca. 10 % van de druksterkte, bij metselwerk ligt dit tussen de 5 % en de 10 %.

Metselwerk en ongewapend beton worden dan ook voornamelijk gebruikt voor wanden, waarbij immers de drukspanningen overheersen.

Voor liggerachtige constructies is metselwerk ongeschikt en moet beton van wapening worden voorzien.

Bij gewoon gewapend beton nemen de wapeningsstaven de trekkrachten van het beton over nadat dit is gescheurd. De berekeningswijze van gewapend beton komt aan de orde in KW-7.

Bij voorgespannen beton brengen we via kabels van te voren zodanige drukkrachten in het beton aan, dat de trekspanningen die door het eigen gewicht en de belasting ontstaan, geheel of gedeeltelijk worden gecompenseerd [KW-7]

In de meest eenvoudige vorm van voorgespannen beton wordt gebruik gemaakt van rechte kabels. In principe kunnen we hiervan de krachtswerking reeds doorzien met behulp van de voorheen afgeleide betrekkingen. Maar ook dit probleem wordt pas behandeld in KW-7.

In [476] wordt – ter wille van de volledigheid – aangegeven in welk gebied van een rechthoekige doorsnede excentrische drukkrachten mogen aangrijpen, zonder dat ergens in de doorsnede trekkrachten ontstaan. Dit 'veilige' gebied wordt aangeduid als de *kern* van de doorsnede.

Aangezien de kern van een doorsnede veel van zijn vroegere betekenis bij het voorspannen heeft verloren, wordt op andere doorsnedevormen niet ingegaan. Metselwerk wordt meestal vervaardigd van baksteen of kalkzandsteen; soms ook van natuursteen of betonsteen. De treksterkte die door de voegen van het metselwerk kan worden overgebracht, is meestal zo gering dat deze sterkte beter kan worden verwaarloosd.

Het blijkt echter dat drukkrachten, die op een beperkte afstand buiten de kern van de doorsnede aangrijpen, toch nog kunnen worden overgedragen, zolang de druklijn zich maar binnen de doorsnede bevindt.

Het gedeelte van de doorsnede, waar trekkrachten volgens de voorgaande berekeningen zouden moeten optreden, onttrekt zich dan plaatselijk aan de krachtswerking. Het resterende effectieve deel van de doorsnede gedraagt zich dan weer volgens de gewone regels.

We spreken in dit soort gevallen meestal van een gedeeltelijk meewerkende doorsnede.

20.5.2 KERN BIJ EEN RECHTHOEKIGE DOORSNEDE

We beschouwen een rechthoekige doorsnede, waarbij we een centrische drukkracht vanaf het zwaartepunt van de doorsnede langs de z-as verplaatsen naar punt R, zie fig. 1a. Uit formule [470-(5)] volgt dat de spanning in de bovenste uiterste vezel juist gelijk is aan nul indien geldt: e = h/6, zie fig. 1b. Deze afstand wordt de kernstraal genoemd en meestal met k aangegeven Evenzo veroorzaakt een excentriciteit e = h/6boven de y-as in de onderste uiterste vezel een spanning die juist gelijk is aan nul.

Op overeenkomstige wijze kan het aangrijpingspunt van de kracht zich op de y-as bewegen tussen y = -b/6 en y = +b/6, zonder dat in de doorsnede trekspanningen ontstaan, zie fig. 1c.

Zet men de kernstralen ter weerszijden van het zwaartepunt uit langs de assen en verbindt men de opvolgende punten met elkaar, dan ontstaat een ruitvormige figuur, die de *kern* van de doorsnede wordt genoemd, zie fig. 1a. Zolang het aangrijpingspunt van de kracht zich binnen deze kern bevindt, zullen nergens in de doorsnede trekspanningen ontstaan.

Dit is als volgt in te zien, zie fig. 1d, waar de kern vergroot is weergegeven. We brengen een drukkracht F aan op een willekeurig punt P van de rand van de kern. Deze kracht wordt vervolgens ontbonden in twee componenten F_Q en F_R , die liggen op de snijpunten van de kernrand met het assenkruis, zie fig. 1d. De ontbondenen veroorzaken elk een driehoekig drukspanningsverloop over de doorsnede, waarbij de spanning langs één zijrand juist gelijk is aan nul, zie fig. 1b, c. De superpositie van beide spanningsverlopen veroorzaakt dan over de gehele doorsnede een drukspanningsverloop, waarbij alleen de spanning in één hoekpunt nog gelijk is aan nul; namelijk in punt A van fig. 1a.

Als de kracht F aangrijpt in punt Q van de kernrand, dan valt de (echte) neutrale lijn samen met de zijrand A-C van de doorsnede.

- Fig. 1 Kern van een rechthoekige doorsnede
- a. Afmetingen van de doorsnede en de kern
 b. Spanningsverloop als F aangrijpt in het onderste kernpunt R
- c. Spanningsverloop als F aangrijpt in het rechter kernpunt Q
- d. De kracht F aangrijpend op een willekeurig punt P van de kernrand – wordt ontbonden in twee evenwijdige krachten, aangrijpend in Q en R

Als de kracht F aangrijpt in punt R van de kernrand, dan valt de (echte) neutrale lijn samen met de zijrand A-B van de doorsnede.

Bij verplaatsing van de kracht F van Q naar R, roteert de neutrale lijn – rechtsdraaiend buiten de doorsnede om – rond hoekpunt A van de doorsnede, vanuit de stand A-C tot de stand A-B.

20.5.3 GEDEELTELIJK MEEWERKENDE RECHTHOEKIGE DOORSNEDE

We onderzoeken nu het geval dat de kracht Fnog wel binnen de doorsnede aangrijpt, maar niet meer binnen de kern ligt. We beperken ons daarbij tot rechthoekige doorsneden waarbij de kracht op een van de hoofdassen is gelegen, zoals is weergegeven fig. 2. We beginnen met het grensgeval waar de kracht F in het rechter kernpunt aangrijpt en de spanning in de linkerrand van de doorsnede gelijk is aan nul, zie fig. 2a. Plaatsen we de kracht F meer naar rechts, dan zullen in het linker deel van de doorsnede dus trekspanningen moeten optreden, zie fig. 2b1; vergelijk hiertoe ook fig. [471-3].

Als het materiaal echter niet in staat is om trekspanningen op te nemen, dan behoeft dit nog niet direct tot het bezwijken van de staaf (c.q. kolom) te leiden. De natuur gebruikt in dat geval maar een gedeelte van de doorsnede om de krachten over te brengen. In dit gedeelte blijven vlakke doorsneden weer gewoon vlak en treden uitsluitend drukspanningen op. Deze drukspanningen moeten uiteraard weer evenwicht maken met de uitwendige kracht.

Als wij nu kans zien om een dergelijke spanningsverdeling aan te geven, dan hebben we de oplossing van het vraagstuk gevonden.

Dit blijkt al bijzonder eenvoudig te zijn; we zorgen er voor dat de zogenaamde *meewerkende* doorsnede zodanige afmetingen krijgt dat de kracht F weer in het kernpunt van deze overblijvende doorsnede komt te staan. Deze situatie is weergegeven in fig. 2b2 en b3. De afstand van het aangrijpingspunt tot de buitenrand bedraagt f, het meewerkende deel van de doorsnede heeft dan een lengte 3 f, vergelijk fig. 2a2.

De grootte van de maximale spanning volgt dan uit de voorwaarde dat de inhoud van de spanningsfiguur gelijk moet zijn aan de kracht *F*:

$$1/2 * b_y * 3f * \sigma_{\max} = F$$
 (7)

Deze materie is wat uitvoeriger behandeld in KW-0 [062-065], bij de verende ondersteuning.

- Fig. 2 Spanningsverloop in rechthoekige doorsneden die geen trek kunnen opnemen
- a. Kracht in het rechter kernpunt; driehoekig spanningsverloop over de gehele doorsnede
- b1 Kracht buiten het rechter kernpunt van de volledige doorsnede, zodat over een gedeelte van de doorsnede trekspanningen moeten ontstaan
- b2 De kracht bevindt zich tegelijkertijd in het kernpunt van het gedeelte dat we als meewerkende doorsnede aanduiden;
- b3 hieruit volgt weer een driehoekig spanningsverloop over deze meewerkende doorsnede

GEMETSELDE WANDEN

Bij gemetselde wanden treden overeenkomstige verschijnselen op als in 477 zijn besproken. Over het algemeen zullen we een strook van een muur beschouwen van 1 m lengte, zie fig. 1a. De puntlast van de vorige beschouwingen is dan vervangen door een lijnlast. Zolang deze aangrijpt binnen het middelste 1/3 deel van de breedte, zullen geen trekspanningen optreden. De kern is nu dus vervangen door een strook ter breedte b/3, zie fig. 1a.

Ook hier kan de lijnlast buiten de strook aangrijpen waarbij een deel van de doorsnede niet meewerkt. Zodra de lijnlast de buitenrand echter te veel nadert lopen de maximale spanningen sterk op omdat de meewerkende muurbreedte steeds kleiner wordt, zie fig. 1b.

Het is dus handig om een toelaatbare waarde voor de maximale spanning aan de rand aan te nemen, die in de praktijk niet mag worden overschreden.

Bij een gemetselde muur kan eigenlijk ter plaatse van elke voeg een scheur ontstaan.

Om de krachten vanuit de muren op de ondergrond over te brengen wordt bij funderingen op staal meestal een balk van gewapend beton toegepast. Deze krijgt dan een verbrede voet om de spanningen op de ondergrond binnen toelaatbare grenzen te houden, zie fig. 2.

Deze gewapend betonbalk kan wel degelijk trekspanningen opnemen. Ter plaatse van de aansluiting aan de ondergrond is er natuurlijk weer *geen sprake van* dat trekspanningen vanuit de fundering op de ondergrond kunnen worden overgedragen. Maar door de verbrede voet zijn er toch aanzienlijke excentriciteiten mogelijk voor er iets fout gaat.

Fig. 1 Lijnlast op een muur

- a. Beschouwde strook van 1 m breedte met een lijnlast ter plaase van de linker kernrand
- b. Het spanningsverloop afhankelijk van de optredende excentriciteit

Fig. 2 Excentriciteit bij een fundering van gewapend beton (fundering op staal)

DRUKLIJN BIJ EEN MUUR OF KOLOM

We beschouwen een muur of kolom onder eigen gewicht met één horizontale puntlast in de top. Gevraagd wordt om de ligging van de druklijn te bepalen.

Om de gedachte te bepalen gaan we uit van een kolom, die is opgebouwd uit grote natuurstenen blokken. Het gewicht van elk blok is zodanig getekend dat de kracht per blok juist de hoogte van het blok heeft, zie fig. 4a.

We bepalen nu achtereenvolgens de resultante van de kracht die via een voeg op de daaronder liggende blokken wordt overgedragen, en we werken van boven naar beneden, zie fig. 4b, c. We zien dan al gauw dat elk opeenvolgend drukpunt precies dezelfde afstand e tot de verticale zwaartelijn van de kolom heeft.

De druklijn blijkt een verticale lijn te zijn op een constante afstand van de aslijn van de kolom, zoals is getekend in fig 3d.

Als we voor het bovenste blok dus binnen aanvaardbare grenzen blijven, dan geldt dit ook voor alle daaronder liggende blokken.

Als behalve de horizontale kracht in de top ook nog een verticale kracht aangrijpt, dan wordt de druklijn een gebogen lijn, die langzaam nadert tot de voorgaande lijn die geldt *zonder* de extra bovenbelasting, zie fig. 4e.

Van de lezer wordt niet verwacht, dat hij zelf dit soort druklijnen gaat construeren. Het verklaart echter wel de geleidelijke uitbouw van steunberen bij Gothische kathedralen, zie fig. 3.

Fig. 4 Druklijn voor een blokkenstapeling onder eigen gewicht met één horizontale puntlast in de top

a. Stapeling met de daarop werkende krachten

b. Constructie van het drukpunt in de eerste voeg

- c. Idem voor de derde voeg
- d. Druklijn

e. Druklijn voor dezelfde blokkenstapeling als in a. met bovendien één extra verticale kracht in de top

Fig. 3 Steunbeer bij de kathedraal van Laon

20.6.1 ALGEMEEN

In [455] is reeds besproken, dat dwarskrachten nooit alleen kunnen voorkomen, het dwarskrachtenverloop veroorzaakt tegelijkertijd ook een momentenverloop. In KW-2 [265-(13)] werd reeds afgeleid:

$$M_x = \int V_x \, dx$$

We hebben in [456] echter ook gesteld, dat de vervormingen die door dwarskrachten worden veroorzaakt, zo klein zijn dat we voor de bepaling van de *buigspanningen* mogen blijven uitgaan van de gebruikelijke aanname: *vlakke doorsneden blijven vlak*.

De dwarskracht ligt als het ware in het vlak van de normale doorsnede; de spanningen die door de dwarskracht worden veroorzaakt dienen dan ook in dit vlak te liggen. Met andere woorden; dwarskrachten veroorzaken in de normale doorsnede alleen schuifspanningen.

Om deze schuifspanningsverdeling te kunnen bepalen moeten we echter via een omweg te werk gaan. We beschouwen een liggermootje waarop een evenwichtssysteem van dwarskrachten en buigende momenten aangrijpt, zie fig. 1a. Dit mootje verdelen we vervolgens door een horizontale snede in twee delen. Uit een evenwichtsbeschouwing voor elk deel blijkt dan dat in het horizontale snedevlak schuifspanningen aanwezig moeten zijn, zie fig. 1b.

Door deze grootte te bepalen ligt ook de schuifspanning in het aangrenzende vertikale elementje vast, zie fig. 1c. Schuifspanningen op onderling loodrechte vlakjes zijn immers even groot en tegengesteld gericht [411-3b en 4c].

Omdat bij de afleiding alleen maar evenwichtsbeschouwingen worden gebruikt en de vervormingen buiten beschouwing zijn gelaten, is de beschrijving van het spanningsverloop ten gevolge van dwarskrachten wat minder nauwkeurig dan dat bij zuivere buiging.

20.6.2 EVENWICHTSBESCHOUWING OP EEN LIGGER-ELEMENTJE

We beschouwen het evenwicht van een mootje uit een prismatische balk met een T-vormige dwarsdoorsnede, zie fig. 2a. Op dit mootje werkt een constante dwarskracht V, zie fig. 2b. Op de linkerzijde van het mootje werkt een positief buigend moment M. Op de rechterzijde moet dan een buigend moment werken ter grootte:

$$M + \Delta M = M + V * a$$

Zie zo nodig, KW-2 [262-263].

De spanningen in het linker- en rechterzijvlak van de beschouwde moot volgen dan uit:

$$\sigma_1 = \frac{M * z}{I} \qquad \sigma_2 = \frac{(M + V a)z}{I}$$

Fig. 1 Principe van de berekening

a. Evenwicht van een liggermootje tussen de sneden 1 en 2

- b. Evenwicht van het onderste plakje van het mootje, beneden snede 3
- c. Ter plaatse van de snijlijn van de vlakken 1 en 3 (c.q. 2 en 3), zijn de schuifspanningen gelijk en tegengesteld gericht

Dit spanningsverloop op beide zijvlakjes is uitgezet in fig. 2c.We beschouwen nu een horizontale lijn in deze moot, op een afstand z beneden de neutrale lijn. Het verschil tussen beide spanningen is daar gelijk aan:

$$\sigma_2 - \sigma_1 = \frac{V * a * z}{I} \tag{8}$$

Vervolgens brengen we een doorgaande horizontale snede aan op een afstand z_3 beneden de neutrale lijn en beschouwen het horizontale evenwicht van het deel van de moot beneden deze snede, zie fig. 2d.

Doordat de trekspanningen op het rechter zijvlak groter zijn dan op het linkerzijvlak, werkt er op het 'afgesneden' deel een kracht naar rechts.

Het afgesneden gedachte deel kan dan alleen maar in evenwicht worden gehouden door een horizontale naar links gerichte kracht $\Delta F_{\rm H}$, die wordt geleverd door schuifspanningen in het snedevlak.

Om $\Delta F_{\rm H}$ te bepalen moet dus het verschil worden berekend van de krachten die op de zijvlakken van het afgesneden mootdeel met doorsnede A_0 werken.

$$\Delta F_{\rm H} = \int^{A_0} (\sigma_2 - \sigma_1) \, dA = \int^{z_4}_{z_3} \frac{V \, a z}{I} \, dA \quad (9)$$

Verdere uitwerking van formule (9) levert:

$$\Delta F_{\rm H} = \frac{Va}{I} \int_{z_3}^{z_4} z \, dA = \frac{Va}{I} S_0$$
(10)

In formule (10) stelt S_0 dus het lineaire oppervlakte-moment voor van het *afgesneden* gedachte gedeelte ten opzichte van de *neutrale lijn* van de doorsnede, zie ook fig. 2a.

Fig. 2 Bepaling van de schuifspanningen

- a. Dwarsdoorsnede (afgesneden gedachte deel gerasterd aangegeven)
- b. Evenwicht van een balkmootje te lengte a
- c. Buigspanningsverdeling op de zijvlakken van het mootje
- d. Spanningen op het onderste afgesneden deel van het mootje

20.6.3 BEPALING VAN DE VERTICAAL WERKENDE SCHUIFSPANNING

Om de schuifspanning in de normale doorsnede te kunnen vinden, zullen we eerst de (gemiddelde) horizontale schuifspanning in snedevlak 3 bepalen. De kracht $\Delta F_{\rm H}$ volgens [479-(10)] moet daartoe worden gedeeld door het oppervlak van het horizontale snedevlak:

$$\tau_{\rm h} = \frac{\Delta F_{\rm H}}{ab} = \frac{VaS_0}{I*ab} = \frac{VS_0}{bI}$$
(11a)

In formule (11a) is de afstand *a* weggevallen, de beide beschouwde doorsneden 1 en 2 uit [478] zijn daardoor samengevallen tot één verticale doorsnede.

Bij de behandeling van lijnspanningstoestanden in [410-411] is afgeleid dat schuifspanningen op onderling loodrechte vlakjes even groot zijn en tegengesteld gericht, dat wil zeggen, beide naar dezelfde hoek toe of er juist vanaf. Dit houdt in dat de grootte van de verticale schuifspanning ter hoogte van doorsnede 3 eveneens is bepaald door formule (11a) en dat de schuifspanning in dezelfde richting moet werken als de bijbehorende dwarskracht, vergelijk fig. 1a en 1c. Als algemene formule voor de schuifspanningen in een normale doorsnede houden we daarom aan:

$$\tau = \frac{VS_0}{bI} \tag{11}$$

Uit formule (11) volgt:

- de schuifspanning is recht evenredig met de dwarskracht V,
- de schuifspanning is recht evenredig met het lineaire oppervlakte-moment van het afgesneden gedachte deel ten opzichte van de neutrale lijn (S_0) ,
- de schuifspanning is omgekeerd evenredig met de beschouwde plaatselijke breedte b van de doorsnede,
- de schuifspanning is omgekeerd evenredig met het (eigen) kwadratisch oppervlakte-moment van de doorsnede.

- Fig. 1 Bepaling van de verticale schuifspanningen a. Dwarskrachten op de liggermoot
- b. Horizontale schuifkracht maakt evenwicht met het verschil van beide trekkrachten op het afgesneden deel
- c. Horizontale en verticale schuifspanningen op het afgesneden gedachte deel van de moot

Aangezien S_0 maximaal is ter plaatse van de neutrale lijn, zal daar meestal ook de maximale schuifspanning optreden. Hier kunnen uiteraard afwijkingen in optreden als de breedte van de doorsnede in de directe omgeving van de neutrale lijn variëert.

20.6.4 SCHUIFSPANNINGSVERLOOP RECHTHOEKIGE DOORSNEDE

Voor een rechthoekige doorsnede kunnen we de schuifspanningsverdeling gemakkelijk in een analytische vorm afleiden.

De maximale schuifspanning treedt op ter plaatse van de neutrale lijn, zie fig. 2a:

$$S_{\max} = b \frac{h}{2} \frac{h}{4} = \frac{1}{8} b h^{2}$$

$$\tau_{\max} = \frac{V S_{0}}{b I} = \frac{V * \frac{1}{8} b h^{2}}{b * \frac{1}{12} b h^{3}} = \frac{3}{2} \frac{V}{b h}$$
(12)

De maximale schuifspanning in een rechthoekige doorsnede is gelijk aan $1,5 \times$ de gemiddelde waarde van de schuifspanning.

Om de algemene formule te vinden voor de schuifspanningsverdeling in een rechthoekige balk, moet S_0 worden bepaald als functie van z; de grootheden V, b en I zijn immers constant, zie fig. 2b

$$S_{0} = \left(\frac{h}{2} - z\right) * b * \left(z + \frac{h/2 - z}{2}\right) =$$
$$= \frac{b}{2} \left(\frac{h}{2} - z\right) \left(\frac{h}{2} + z\right) = \frac{b}{8} \left(h^{2} - 4z^{2}\right)$$
(13)

Dit is de formule voor een parabool, zie fig. 2c. Voor $z = \pm h/2$ volgt $S_0 = 0$; en voor z = 0 volgt $S_0 = 1/8 bh^2$.

De vorm van het schuifspanningsverloop wordt volledig bepaald door S_0 . De schuifspanningen verlopen parabolisch over de hoogte en zijn gelijkmatig verdeeld over de breedte, zie fig. 2d. De waarde van τ_{max} bij een rechthoek dient tot de parate kennis te behoren:

$$\tau_{\max} = \frac{3}{2} \frac{V}{b h} \tag{12}$$

Uit formule (12) blijkt dat het voor de maximale *schuifspanning* niet van belang is of een balk rechtop wordt gezet of op z'n plat gelegd. Voor de *buigspanningen* maakt dit wêl verschil.

- Fig. 2 Schuifspanningen bij een rechthoek
- a. Bepaling van de maximale schuifspanning ter plaatse van de neutrale lijn
- b. Bepaling van het schuifspanningsverloop over de hoogte
- c. Verloop uitgezet loodrecht op de normale doorsnede
- d. Werkelijk verloop in de normale doorsnede tezamen met de gebruikelijke aanduiding loodrecht op de normale doorsnede

Achteraf bezien blijkt de gelijkmatig verdeelde schuifspanning die we in KW-0 [057-2c] bij ons blokkenmodel vonden, niet eens zo veel af te wijken van de werkelijke verdeling in een liggerdoorsnede.

We zullen later in KW-7 zien dat we bij gewapend beton, waar de doorsnede is gescheurd en we eigenlijk niet goed weten waar de schuifspanningen zich bevinden, gemakshalve met een zogenaamde *nominale* schuifspanning werken, waarvan we eveneens aannemen dat ze gelijkmatig over de doorsnede is verdeeld.

20.6.5 SCHUIFSPANNINGSVERDELING BIJ DUNWANDIGE PROFIELEN

Bij doorsneden met een sprongsgewijs verlopende breedte, geeft toepassing van de standaardformule [480-(11)] irreële resultaten. Bij de aansluiting van een flens aan een lijf volgen immers ongelijke schuifspanningen in één en hetzelfde doorsnedevlak. Vooral bij dunwandige profielen spreekt dit zeer sterk. Bij het I-profiel van fig. 1a zouden we namelijk de gehele horizontale schuifkracht in het lijf – ter plaatse van de aansluiting aan de flens – ineens over de gehele breedte van de flens moeten verdelen.

In fig. 1b is de waarde van S_0 weergegeven, die vrijwel lineair verloopt over de dikte t_1 van de flenzen en vervolgens maar weinig variëert over de resterende hoogte $(h - 2t_1)$ van het lijf.

De flenzen leveren immers verreweg het grootste deel van het lineaire oppervlaktemoment S_0 – steeds opgemaakt ten opzichte van de neutrale lijn – en het lijf draagt daaraan niet veel meer bij. De hieruit volgende schuifspanningsverdeling volgens formule [480-(11)] is weergegeven in fig. 1c. Door de grote breedte *b* van de flenzen berekent men hier minieme schuifspanningen.

We vinden voor de flenzen echter geheel andere resultaten als we geen horizontale snede in de flenzen aanbrengen maar een verticale, zoals is weergegeven in fig. 2b2.

Uit het verloop van de buigspanningen in fig. 2a volgt dat de trekkracht in de flenzen per eenheid van breedte constant is. De trekkracht op het afgesneden deel van de onderflens is dus recht evenredig met de breedte van dit deel.

Doordat het buigend moment in lengterichting van de ligger varieert, werken er op het afgesneden deel van de onderflens weer ongelijk grote trekkrachten. Deze moeten in evenwicht worden gehouden door schuifkrachten in het snedevlak, zie fig. 2b2. Uit een en ander volgt een lineair verloop van de grootte van de schuifspanning in de flenzen; vanaf nul aan de vrije uiteinden tot de maximale waarde bij de aansluitingen aan het lijf, zoals is weergegeven in fig. 3a.

Fig. 1 Schuifspanningsverdeling volgens de standaardformule [480-(11)]

- a. Afmetingen van de doorsnede
- b. Verloop van S_0
- c. Berekend verloop van τ_{xz}

- Fig. 2 Spanningsverdeling bij een I-profiel
- a. Trek- en drukspanningen in een normale doorsnede, ruimtelijk uitgezet
- b1 Beschouwing van een moot uit de I-balk tussen de normale doorsneden 1 en 2
- b2 Evenwicht van het afgesneden deel van de flens, rechts van snede 3 in langsrichting

Om voor dunwandige profielen enig inzicht te verkrijgen in het schuifspanningsverloop, is dit voor een drietal profielen met een constante wanddikte t berekend.

Voor een gemakkelijke vergelijking zijn de drie profielen geïdealiseerd, de hoogte en de wanddikte is voor alle drie gelijk gekozen. De dwarskracht werkt in verticale richting. Voor de numerieke uitwerking is uitgegaan van de verhouding: t/h = 1: 15.

De schuifspanningen zijn weergegeven in fig. 3 en uitgedrukt in V/th. De spanningen kunnen als zodanig direct worden vergeleken met de gemiddelde schuifspanning in het lijf (lange stippellijnen in de figuren).

Het blijkt dat de werkelijk optredende schuifspanningen in het lijf maar weinig afwijken van deze gemiddelde waarden. De overeenkomst met de maximale waarde van τ is het beste als we uitgaan van de hoogte (h-2t) van het lijf tussen de flenzen (korte stippellijnen in de tekening). Voor een praktijkberekening is substitutie van de hoogte van het lijf tussen de hartlijnen van de flenzen het meest voor de hand liggend: (h-t). De hieruit volgende waarde van τ komt dan goed overeen met de gemiddelde waarde van de weinig variërende schuifspanning in het lijf.

Ter vermijding van misverstanden; de schuifspanningsverdeling in het *lijf* is bij de drie profielen volkomen gelijk aan die volgens formule [480-(11)], alleen het spanningsverloop in de *flenzen* is volledig afwijkend.

Het schuifspanningsverloop in de flenzen is dus gemakkelijk te bepalen. Ter plaatse van de aansluiting van beide flenshelften aan het lijf moet er immers evenwicht van krachten heersen, zie fig. 4.

De schuifspanningen in het lijf hebben dezelfde richting als de dwarskracht die op de beschouwde normale doorsnede werkt. De schuifspanningen in de flenzen vormen als het ware de toevoer en de afvoer van de 'schuifspanningsstroom' in het lijf.

Ontbreken de flenzen aan één of twee uiteinden, dan moet de aanvoer als het ware in de flens zelf worden opgebouwd via een parabolische verloop, zie fig. 3c.

Fig. 4 Krachtenevenwicht bij de aansluiting van het lijf aan de flenzen

20.6.6 VEREENVOUDIGDE SCHUIFSPANNINGS-BEREKENING

Het is zeer gebruikelijk bij staalprofielen met (horizontale) flenzen, om de schuifspanningen gelijkmatig verdeeld over het lijf aan te nemen, zie fig. 1a.

Let hierbij op het volgende:

Voor het I-profiel op zijn kant volgens fig. 1b neemt elke (verticaal staande) flens de helft van de dwarskracht op en veroorzaakt daarbij in elke flens een parabolisch schuifspanningsverloop. Het horizontale lijf doet nu niet mee in de overdracht van de schuifspanningen. Het is dan ook volkomen onjuist om ter plaatse van de neutrale lijn als 'breedte' van de doorsnede de hoogte hvan het profiel in te voeren.

Bij het kokerprofiel van fig. 1c nemen de beide verticale zijwanden weer elk de helft van de dwarskracht op en ontstaat er een vrijwel constant schuifspanningsverloop in deze zijwanden. In de verticale symmetrielijn van de doorsnede zijn de schuifspanningen juist gelijk aan nul. Vanaf hier verlopen ze lineair naar de zijwanden. In feite geeft het U-profiel van fig. [483-3b] de spanningsverdeling weer in de linkerhelft van de koker. De grootte van de spanningen in de koker is echter maar half zo groot, omdat per kokerhelft maar de halve dwarskracht aangrijpt.

Bij dikwandige profielen zoals ze in de betonbouw voorkomen, kan men zich behelpen door de flenzen helemaal niet te beschouwen en alleen maar een parabolische schuifspanningsverdeling in het lijf aan te nemen, zie fig. 2. Deze schuifspanningen zullen immers vrijwel nooit maatgevend zijn. Als deze spanningen te hoog zouden oplopen kan men beter op een geheel andere wijze niet lineair elastisch rekenen. Dergelijke berekeningen moeten met computerprogramma's worden uitgevoerd en vallen buiten het kader van KW-4.

Fig. 2 Vereenvoudigde berekening bij een dikwandig profiel (beton)
a. T-balk b. Randbalk van een vloer

Aangehouden schuifspanningsverloop (parabolisch, c.q. gelijkmatig verdeeld)

c.

20.6.7 BELANG VAN HORIZONTALE SCHUIFSPANNINGEN

Dimensionering van lineaire constructiedelen vindt plaats aan de hand van de optredende normaalspanningen (en wel voornamelijk de buigspanningen). De schuifspanningen worden achteraf gecontroleerd en blijken zelden of nooit maatgevend te zijn. Dit zou de indruk kunnen wekken dat het voorgaande moet worden gekarakteriseerd als 'much ado about nothing'.

Toch is dit niet juist.

Bij de dunne lijven van staalprofielen kunnen de spanningen bij grote belastingen en kleine overspanningen wel degelijk hoog oplopen.

Bij betonbalken zal de schuifspanning meestal geen grote rol spelen; de problemen kunnen door het aanbrengen van beugels worden opgelost. Bij houten balken moeten we veel meer op onze hoede zijn. De verticale schuifspanningen bij liggers, treden op in vlakken die loodrecht staan op de vezelrichting. Deze spanningen kunnen gemakkelijk worden opgenomen. Maar daar horen dan even grote horizontale schuifspanningen bij. Die werken dus in vlakken evenwijdig aan de vezelrichting. En juist in deze richting is hout voor schuifspanningen een zwak materiaal.

Soms worden losse houten balken op elkaar bevestigd om een balk van dubbele hoogte te vormen, dan wel een plomp I- of T-profiel, zie fig. 3a. In zo'n geval zullen draadnagels, kramplaten of deuvels de schuifkrachten moeten overbrengen die nodig zijn om de losse balken als één geheel te laten werken. De buigstijfheid neemt hierdoor immers aanzienlijk toe. Controle op de grootte van deze locaal over te brengen krachten is noodzakelijk. Hetzelfde geldt voor alle losse stapelingen van platen of liggers. Bij voorkeur werken deze als losse liggers die elk hun eigen kwadratisch oppervlaktemoment leveren, zie fig. 3b.

Vergelijk daartoe de modellen van fig. 4. Bij de scharnierende verbinding van boven- en onderflens in fig. 4a leveren de 'boven en onderflens' alleen hun eigen kwadratische oppervlaktemoment aan de buigstijfheid. Bij de prismatische balk van fig. 4b leveren lijf en flenzen hun aandeel volgens [449], maar bij het vakwerk van fig. 4c leveren alleen de flenzen hun aandeel volgens [449]. De diagonalen en verticalen zorgen er dan voor dat 'vlakke' normale doorsneden in hoofdtrekken vlak blijven

Fig. 3 Schuifspanningen in horizontale vlakken (hout) a. Eenvoudige samenstellingen van houten balken

b. Stapeling van losse planken

Losse planken werken *niet* als één geheel Bij de ondersteuningen blijven vlakke doorsneden – als de stapeling als één geheel wordt beschouwd – dan ook niet meer vlak

Fig. 4 Speelmodellen, waarbij de verbinding tussen boven- en onderflens wordt gevormd door:

a, b. Verticale pendelstijlen; Een continu lijf

c. Verticale pendelstijlen + diagonalen (vakwerk)

20.7.1 ALGEMEEN

We spreken van zuivere wringing als een ligger of staaf een constant wringend moment moet overbrengen, zie fig. 1. Alle andere snedekrachten worden gelijk aan nul verondersteld. In een normale doorsnede treden alleen maar

schuifspanningen op die tezamen een koppel vormen ter grootte van het wringend moment. De opeenvolgende normale doorsneden verdraaien hierbij ten opzichte van de liggeras en *verwelven* hierbij. Dit betekent dat een normale doorsnede niet meer vlak blijft, maar verplaatsingen vertoont loodrecht op de normale doorsnede. Maar omdat bij een constant wringend moment alle opvolgende doorsneden dezelfde verwelving vertonen, blijven de opeenvolgende normale doorsneden wel aan elkaar passen.

Voor de meest eenvoudige toestand waarbij deze verwelvingen ongehinderd kunnen optreden, is door *de St. Venant* de spanningsverdeling afgeleid in 1855. Deze stof valt buiten het bestek van KW-4. Geïnteresseerden worden verwezen naar de literatuur {7}.

Alleen voor cirkelvormige doorsneden is een betrekkelijk eenvoudige afleiding mogelijk, omdat dit het enige geval is waarbij vlakke doorsneden wèl vlak blijven. Ter verklaring van het gedrag van buisvormige profielen zullen we hier in [492] enige aandacht aan besteden. Op zich heeft de cirkelvorm voor ons echter weinig practische betekenis.

We zullen de belangrijkste *uitkomsten* van de theorie volgens de St Venant echter wel vermelden. Voorts kunnen we gebruik maken van twee analogiën, die een alleszins redelijke indruk geven van de spanningen die zijn te verwachten. Voor dunwandige staal- of messingprofielen, waar de optredende vervormingen het meeste van belang zijn, kunnen de spanningen met behulp van heel eenvoudige regels vrijwel exact worden berekend.

[7] J.P. den Hartog, 'Advanced Strength of Materials', Chapter I. Torsion McGraw-Hill Book Company, Inc. 1952

Fig. 1 Verwringing van een balkje, vervaardigd van polystyreenschuim

Probeer dit zelf en constateer dat de einddoorsneden door de verwelving niet meer op een plat vlak passen. Verifiëer voorts dat alle zijvlakken van het stripje onder hoeken van $+ 45^{\circ}$ en $- 45^{\circ}$ met de normale doorsnede, resp. positieve en negatieve krommingen vertonen

In de praktijk treedt wringing meestal gecombineerd op met buiging en dwarskracht. Dikwijls realiseren we ons niet dat er wringing optreedt en hebben we er ook nauwelijks last van.

Maar er kunnen zich ook gevallen voordoen, dat zeer grote onverwachte vervormingen voor onaangename verrassingen zorgen. Het is dus wel degelijk zaak dat we de meest essentiele eigenschappen van dit veerkrachtsgeval weten te onderkennen.

Denk aan twee even zware kinderen die elkaar op een wipplank in evenwicht houden. Als elk kind naar zijn rechterkant overhelt wordt de plank tussen beide kinderen onderworpen aan een zuiver wringend moment, waar in feite niemand iets van merkt. Maar als een van de twee besluit naar de andere kant over te hellen dan slaat het wringend moment bij de oplegging van teken om. De oplegging zal dan niet alleen een verticale oplegreactie moeten leveren, maar ook een koppel dat zijdelings omslaan van de plank tegengaat.

2

20.7.2 RESULTATEN VAN DE THEORIE VAN DE ST VENANT

De theorie geldt voor prismatische staven die over hun gehele lengte zijn onderworpen aan een zuiver (= constant) wringend moment, waarbij de einddoorsneden vrij kunnen vervormen.

Spanningen

- In normale doorsneden treden alleen schuifspanningen op en geen normaalspanningen.
- Langs een rand van een normale doorsnede zijn de schuifspanningen altijd evenwijdig aan deze rand, zie fig. 2.
- Ontbindt men alle schuifspanningen in twee (willekeurig gerichte) onderling loodrechte componenten, dan geldt het volgende:
 - a. De schuifspannings-componenten in de éne richting (y-richting) dragen dan de éne helft bij aan het uitwendig wringend moment M_t en de schuifspannings-componenten in de andere richting (z-richting) de andere helft.
 - b. De resulterende krachten in *y* en *z*-richting zijn gelijk aan nul.

Vervormingen

- De opeenvolgende normale doorsneden verdraaien ten opzichte van elkaar, waarbij de doorsnedevorm in aanzicht niet verandert (dus in het y-z-vlak).
- Loodrecht op het vlak van de doorsnede treden verplaatsingen op (dus in x-richting) die voor overeenkomstige punten in elke doorsnede gelijk zijn; het zogenaamde verwelven van de doorsnede, zie fig. 3.

Voor het inzichtelijk maken van de schuifspanningsverdeling bij zuiver wringen zijn twee analogiën in gebruik:

- De stroomlijnen-analogie van Lord Kelvin
- De zeepvlies-analogie van Prandtl

De tweede analogie is 'more powerfull'; de eerste is meer bevattelijk. We zullen de eerste analogie daarom het meeste toepassen en de tweede aan het eind kort bespreken [496].

Fig. 2 Schuifspanningen ten gevolge van wringing in een prismatische staaf van willekeurige doorsnede

Fig. 3 Vergroot weergegeven moot van een prismatische staaf met rechthoekige doorsnede De streep-stiplijn is de neutrale lijn (voor buiging èn wringing) van de normale doorsnede

20.7.3 STROOMLIJNEN-ANALOGIE

De richting en grootte van de schuifspanningen bij een cirkelvormige doorsnede blijken geheel overeen te komen met de richting en grootte van een ideale vloeistof-stroming in een cirkelvormige bak.

Om de stroming zichtbaar te maken, kunnen we als volgt te werk gaan. Boven de bak wordt een camera geplaatst die vast aan de bak is verbonden. Op de vloeistof drijven kleine deeltjes. We verdraaien de bak nu over een kleine hoek om zijn verticale as. Tijdens deze verdraaiing maken we een tijdopname van de deeltjes op de vloeistof.

Bij een cirkelvormige bak komt de vloeistof door zijn traagheid nog niet direct in beweging. De camera verdraait dus ten opzichte van de kleine deeltjes en op de foto ontstaan streepjes die allemaal cirkelvormig zijn, zie fig. 1a.

Bij andere doorsnede-vormen moet de vorm van de bak worden aangepast. De vloeistof kan dan bij het begin van de beweging niet meer geheel stil blijven staan. Door het draaien van de bak moeten ook sommige delen van de vloeistof in beweging komen. Maar met precies hetzelfde procédé kunnen ook hier weer de stroomlijnen worden vastgelegd.

Voor de vierkante doorsnede komt dan een foto te voorschijn zoals geschematiseerd is weergegeven in fig. 1b. Het zal duidelijk zijn dat de optredende stromingen – dus ook de optredende schuifspanningen – niet erg veel zullen afwijken van die bij een cirkel met hetzelfde oppervlak.

Naarmate de vorm van de doorsnede meer rechthoekig wordt, zullen de spanningen ook meer gaan afwijken van de spanningen die we bij het vierkant vonden. In tabel 6 zijn voor enkele verhoudingen t/b, de maximale schuifspanningen weergegeven, die optreden ter plaatse van de middens van de lange zijden b {7}.

Bij kleine verhoudingen van *t/b* kan echter gebruik worden gemaakt van een zeer gemakkelijke benaderingsformule [489].

Fig. 1 Geschematiseerde beelden voor de schuifspanningen volgens de stroomlijnen-analogie

- a. Cirkelvormige doorsnede
- b. Vierkante doorsnede

Ook hier kan de formule voor de maximale schuifspanning weer in een vorm worden gebracht waarbij het (wringend) moment M_t wordt gedeeld door het weerstandsmoment tegen wringing: $W_t = \alpha b t^2$.

Ook de geometrische factor tegen wringing I_t kan op soortgelijke wijze worden vastgelegd: $I_t = \beta bt^3$

Let op: in beide formules geldt: $t \le b$ Afhankelijk van de dikte-breedte verhouding variëert α van 1/5 tot 1/3 en β van 1/7 tot 1/3.

t

+	
I	<u> </u>
	t/b = 0,20

IADEL 0	w _t en	It
t/b	α	β
1,00	0,208	0,141
0,66	0,231	0,196
0,50	0,246	0,229
0,40	0,259	0,249
0,33	0,267	0,263
0,20	0,291	0,291
0,10	0,313	0,312
$\rightarrow 0$	0,333	0,333
		······

TT:

$\tau_{\rm max} = \frac{M_{\rm t}}{\alpha \ b \ t^2}$	$I_{\rm t} = \beta b t^3$
---	---------------------------

TO A TO TOT

20.7.4 SCHUIFSPANNINGSVERDELING IN EEN BREDE STRIP

We beschouwen een brede strip waarbij in het analogon een ronddraaiende stroming zal moeten optreden. In het overgrote deel van de doorsnede treedt een driehoekig snelheidsverloop op, zie fig. 2a. De snelheid is nul in de hartlijn van de strip en bereikt tegengestelde maximale waarden aan de tegenover elkaar liggende lange zijden. Alleen aan de beide einden van de strip zal de vloeistof even 'rond' moeten stromen.

Een en ander houdt in dat de schuifspanningen in het overgrote deel van de strip eveneens driehoekig verlopen. We nemen nu gemakshalve even aan dat dit driehoekige verloop over de gehele lengte van de strip optreedt, zoals is weergegeven in fig. 2b1.

Volgens stelling a. van [487] leveren deze schuifspanningen (allemaal in y-richting) een inwendig moment dat gelijk is aan de *helft* van het totale uitwendige wringende moment M_t .

De schuifspanningen in z-richting – die alleen maar kunnen voorkomen in de directe omgeving van de korte einden – zullen dan de andere helft van het uitwendige wringende moment M_t moeten leveren, zie fig. 2a en 2c.

Als we de maximale schuifspanning aan de lange zijranden gemakshalve aangeven met τ_{xy} , dan kunnen we voor het aandeel van de horizontale schuifspanningen de volgende uitdrukking neerschrijven, zie fig. 2b:

$$\frac{1}{2} M_{t} = \frac{1}{2} \tau_{xy} b \frac{t}{2} * \frac{2}{3} t = \frac{1}{6} \tau_{xy} b t^{2}$$

zodat geldt:

$$\tau_{xy} = \frac{1/2 * M_t}{1/6 * b t^2} = \frac{M_t}{\frac{1}{3} b t^2}$$
(13)

De bepaling van het inwendige wringende moment gebeurt dus op volkomen overeenkomstige wijze als we dat in fig. [421-2] voor het buigende moment hebben gedaan. Alleen stonden daar de spanningen loodrecht op het vlak van de beschouwde doorsnede, terwijl ze hier in het vlak van de doorsnede liggen.

Een tweede verschil is dat op deze wijze pas de *helft* van het uitwendige wringende moment is verdisconteerd.

De maximale schuifspanningen aan de korte zijden van de doorsnede hebben ongeveer dezelfde grootte als aan de lange zijranden. Dit is gemakkelijk in te zien als we weer denken aan de rondlopende vloeistofstroming. De spanningscomponenten τ_{XZ} komen alleen voor aan de uiteinden over een afstandje van hoogtens twee maal de dikte van de strip. De daaruit voortvloeiende vertikale *krachtjes* over deze gebiedjes zijn betrekkelijk klein. Doordat deze krachtjes zo'n grote inwendige hefboomsarm bezitten, zijn ze toch in staat om de andere helft van M_t te leveren.

- Fig. 2 Stroomlijnen-analogie voor een brede strip
- a. De werkelijke schuifspanningsverdeling komt overeen met het snelheidsverloop
- b1. Geschematiseerde schuifspanningen in y-richting
- b2 Bepaling van het aandeel aan het wringend moment ten gevolge van τ_{xy}

c. Geschematiseerde *schuifkrachten* in *z*-richting

20.7.5 MOMENT – VERVORMINGS – RELATIE BIJ EEN BREDE STRIP

Om het verband te kunnen bepalen tussen het wringend moment en de daaruit volgende vervorming van de brede strip, wordt een vierkant elementje uit deze strip beschouwd. Het ruimtelijke model van het elementje is hetzelfde als in fig. [487-3], maar in een wat andere stand geplaatst, zie fig. 1. Het elementje bezit de dikte t van de strip en heeft in bovenaanzicht de zijden a, zie fig. 2a, b. In het bovenste plakje van dit elementje werken overal de maximale schuifspanningen τ_{XY} (in de normale doorsnede) en τ_{YX} (loodrecht op de normale doorsnede) en τ_{YX} (loodrecht op de normale doorsnede) en ruitvorm aan – zie appendix [A - 400] – waarbij de verandering van de rechte hoek gelijk is aan, zie fig. 2c:

$$\gamma = 2 \Delta \psi = 2 \frac{\Delta u}{a} \tag{14}$$

Het onderste plakje van het elementje neemt een vergelijkbare vorm aan, alleen zijn de hoeken $\Delta \psi$ van teken omgedraaid, omdat de schuifspanningen een tegengesteld teken bezitten.

Intussen blijft de vorm van de normale doorsnede in aanzicht onveranderd (rechte hoeken blijven recht). Maar de opvolgende normale doorsneden verdraaien wel ten opzichte van elkaar, zie fig. 2d. De verwelving heeft alleen plaats loodrecht op de normale doorsnede.

De rotatie van de twee beschouwde normale doorsneden ten opzichte van elkaar, kan worden bepaald uit de rotatie van het voor- en achtervlak van het beschouwde elementje, zie fig. 2d. Het voorvlak roteert over een hoekje: $+ \Delta u/t$ en het achtervlak over een hoekje $- \Delta u/t$. De specifieke hoekverdraaiing bedraagt dan:

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}x} = 2 \frac{\Delta u/t}{a} \tag{15}$$

Substitutie van (14) in (15) levert:

$$\frac{\mathrm{d}\,\vartheta}{\mathrm{d}x} = \frac{\gamma}{t} \tag{16}$$

- NB Δu is een kleine verplaatsing in algemene zin, ϑ is de hoekverdraaiing in y-richting.
- Fig. 2 Vervormingen van een brede strip onder een constant wringend moment
 a. Strip onder invloed van een rechtsdraaiend wringend moment
 b. Schuifspanningen op het beschouwde vierkante
- elementjevervormingen van het boven- en ondervlak
- van het beschouwde elementje
- d. Vervormd elementje in aanzicht $(2 \times)$

U We kunnen nu formule [489-(13)] gebruiken om de gezochte betrekking te vinden.

Daartoe vervangen we eerst τ_{xy} door $G\gamma$ volgens formule [A-400-(40)] uit de appendix en elimineren γ vervolgens met behulp van formule (16):

$$\tau_{xy} = G \gamma = G t \frac{\mathrm{d}\vartheta}{\mathrm{d}x}$$

We kunnen deze waarde van τ_{xy} nu substitueren in formule [489-(13)]:

$$G t \frac{\mathrm{d}\vartheta}{\mathrm{d}x} = \frac{M_{\mathrm{t}}}{\frac{1}{3} b t^2}$$
(17a)

Herschreven levert dit:

$$M_{t} = G \frac{1}{3}b t^{3} \frac{d\vartheta}{dx} = G I_{t} \frac{d\vartheta}{dx}$$
(17)

Hierbij wordt de term GI_t aangeduid als de wringstijfheid van de doorsnede. (De factor I_t zou dan moeten worden aangeduid als geometrische factor tegen wringing)

Qua opbouw heeft de wringstijfheid:

 $GI_t = G * 1/3 bt^3$

veel overeenkomst met de buigstijfheid van de doorsnede, maar dan wel om de slappe as:

$$EI_{V} = E * 1/12 bt^{3}$$

Een brede strip is altijd wringslap, terwijl er voor de buiging van een horizontale strip zowel een slappe as (y-as) aanwezig is als een heel stijve as (z-as).

In feite is dit ook wel voor de hand liggend; de vectoren voor de buigende momenten M_y of M_z zijn elk immers rechtstreeks gerelateerd aan een van beide hoofdassen, terwijl de vector voor het wringend moment $M_t = M_x$ loodrecht op deze assen staat en daardoor richtings-onafhankelijk is (vergelijk fig. [454-1b en 1c1].

20.7.6 WRINGSTIJFHEID VAN DUNWANDIGE PROFIELEN

Bij dunwandige profielen moeten we onderscheid maken tussen enkelvoudig en meervoudig samenhangende doorsneden.

Een doorsnede is enkelvoudig samenhangend als de doorsnede geen open ruimten omsluit en is meervoudig samenhangend als dit wel het geval is, zie fig. 3.

Bij alle dunwandige enkelvoudige doorsnedevormen is de wringstijfheid gering. Ze kan direct worden afgeleid uit de resultaten voor de brede strip; formule [489-(13)].

Beschouwen we de stroomlijnen-analogie dan is direct te zien dat het voor de stroming hoegenaamd geen verschil uitmaakt, of de doorsnede van het profiel een of meer knikken vertoont. Alleen de totale lengte ($\approx b_1 + b_2 + b_3$) is maar van belang, zie fig. 3c.

Ook als de dikte van de samenstellende delen van het profiel ongelijk is, volgt de wringstijfheid van het totaal als de som van de wringstijfheden van de samenstellende delen.

$$GI_{t} = G * \Sigma \frac{1}{3}b_{i} t_{i}^{3}$$
 (18)

Formule (17) gaat voor dit geval dan over in:

$$M_{t} = \left[G \left(\frac{1}{3} b_{1} t_{1}^{3} + \frac{1}{3} b_{2} t_{2}^{3} + \ldots \right) \right] \frac{\mathrm{d}\vartheta}{\mathrm{d}x} \quad (19)$$

De vorm tussen [] geeft de wringstijfheid weer, waarin voor b de hartmaten zijn te nemen. De maximale schuifspanningen langs de zijranden van de diverse onderdelen zijn dan gelijk aan:

$$\tau_1 = \frac{M_t t_1}{I_t}$$
 $\tau_2 = \frac{M_t t_2}{I_t}$ etc. (20)

Fig. 3 Dunwandige profielen

- a. Enkelvoudig samenhangend
- b. Meervoudig samenhangend
- c. Afmetingen van een enkelvoudig samenhangend profiel voor de bepaling van de wringstijfheid (formule 19)

20.7.7 AXIAAL-SYMMETRISCHE DOORSNEDE-VORMEN

Alle ronde buisvormige doorsneden zijn axiaal symmetrisch, zie fig. 1a, b; de massieve cirkel vormt een limietstand ($R_1 = 0$).

We beschouwen van zo'n staaf een mootje ter lengte dx, zie fig. 1a, c. Op beide uiteinden grijpen gelijke en tegengesteld gerichte wringende momenten aan. Vanwege de axiaal-symmetrie zullen de begrenzingsvlakken van dit mootje ook na vervorming vlak moeten blijven.

Voorts leert de stroomlijnen-analogie [488-1a], dat de schuifspanningen lineair moeten variëren vanaf het zwaartepunt van de normale doorsnede, zoals is weergegeven in fig. 1b.

Cirkelvorm

Ten gevolge van de wringende momenten verdraait de bovenste doorsnede van het beschouwde mootje over een hoekje d ϑ ten opzichte van de onderste doorsnede, vergelijk fig. 2a en 2b. Op een afstand r vanaf het middelpunt van de bovenste cirkel ondergaat elk punt een verplaatsing $r d\vartheta$ ten opzichte van de overeenkomstige punten van de onderste cirkel, zie fig. 2b.

De oorspronkelijke rechte hoek tussen een vezel in langsrichting en een normale doorsnede is na vervorming niet langer recht. De verandering van de rechte hoek is gelijk aan:

$$\gamma = \frac{r \, \mathrm{d}\vartheta}{\mathrm{d}x} \tag{21}$$

De grootte van de schuifspanning volgt dan uit formule [499-A-(40)]:

$$\tau = G \gamma = G r \frac{\mathrm{d}\vartheta}{\mathrm{d}x} \tag{22}$$

Alle schuifspanningen in een normale doorsnede zijn tangentiaal gericht. Het aandeel aan het wringend moment van de schuifspanning op een elementair deeltje ten opzichte van het middelpunt is dan gelijk aan, zie fig. 3a:

$$\mathrm{d}M_{\mathrm{t}} = \tau \,\mathrm{d}A * r \tag{23}$$

- Fig. 1 Wringend moment op een buis
- a. Afmetingen
- b. Schuifspanningsverdeling
- c. Zijaanzicht van het mootje, voor en na belasten

Fig. 2 Staaf met cirkelvormige doorsnede a. Staafmootje in onbelaste toestand

b. Staafmootje na belasten

1-2-3 Perspectief - bovenaanzicht - zijaanzicht

Voor het totale wringende moment vinden we dan achtereenvolgens:

$$M_{t} = \int_{a}^{A} \tau \, dA * r = \int_{a}^{A} G r^{2} \frac{d\vartheta}{dx} \, dA =$$
$$= G \frac{d\vartheta}{dx} \int_{a}^{A} r^{2} dA \qquad (24)$$

De integraal van formule (24) wordt aangeduid als het polaire kwadratische oppervlaktemoment $I_p = (I_t)$ [436-(38)] Voor een cirkel geldt dus als wringstijfheid, zie formule [436-(40a)]:

$$G * I_{\rm t} = G * I_{\rm p} = G * 1/2 \pi R^4$$
 (25)

Formule (24) kan nog worden geschreven als:

$$M_{\rm t} = G I_{\rm t} \ \frac{{\rm d}\vartheta}{{\rm d}x} \tag{24a}$$

Substitutie van de hieruit volgende waarde voor $d\vartheta/dx$ in formule (22) levert:

$$\tau = \frac{M_t}{I_t} r \text{ en } \tau_{\max} = \frac{M_t}{I_t} R$$
 (26)

Voor de schuifspanningsverdeling ten gevolge van zuivere wringing in een cirkelvormige doorsnede vinden we dus, zie fig. 3a:

- de spanningen zijn recht evenredig met het wringende moment M_t
- de schuifspanningen zijn recht evenredig met de afstand tot het middelpunt van de cirkel,
- de spanningen zijn omgekeerd evenredig met de geometrische factor tegen wringing $I_{\rm t}$.

Buisvormige doorsnede

Voor een buisvormige doorsnede verloopt de afleiding geheel analoog aan die voor de cirkelvormige doorsnede en kunnen de algemene formules (24a) en (26) worden gebruikt. Ook hier geldt: $I_t = I_p$, zie [436-(40)]

$$I_{\rm p} = \frac{1}{2} \pi \left(R_2^4 - R_1^4 \right) \tag{27}$$

- Fig. 3 Schuifspanningsverdeling in cirkelvormige doorsneden
- a. Cirkel (massieve staaf)
- b. Buis (meervoudig samenhangende doorsnede)
- c. Buis (enkelvoudig samenhangende doorsnede)
- d. Vervorming voor geval c. {7}

Bij de meervoudig samenhangende doorsneden zoals de buis is de wringstijfheid aanmerkelijk groter dan bij de enkelvoudig samenhangende doorsneden van [491]. Ook uit de stroomlijnenanalogie is direct duidelijk dat bij gesloten profielen de vloeistof in één richting rond kan stromen, zie fig. 3b. Bij open profielen daarentegenmoet een heen en terug gaande stroming over de dikte van het profiel plaatsvinden, zie fig. 3c. Let op: als we in lengterichting van een buis een zaagsnede aanbrengen, dan is de wringstijfheid volledig verloren gegaan. We hebben dan weer met een enkelvoudig samenhangende doorsnede te doen, zie fig. 3d.

20.7.8 SPANNINGSVERDELING BIJ KOKERPROFIELEN

Bij (betrekkelijk) dunwandige kokerprofielen is de spanningsverdeling heel eenvoudig te bepalen. In de stroomlijnen-analogie heerst er weer een rondgaande stroming en de snelheid zal omgekeerd evenredig moeten zijn met de plaatselijke wanddikte.

In fig. 1 is een kokerprofiel weergegeven. In de onderdelen 1 en 3 treden uitsluitend horizontale schuifspanningen op en in de onderdelen 2 en 4 uitsluitend verticale schuifspanningen. Hierdoor ontstaan de schuifkrachten $F_{\rm H1}$ en $F_{\rm H3}$ in de horizontale onderdelen en de schuifkrachten $F_{\rm V2}$ en $F_{\rm V4}$ in de verticale onderdelen.

Elk tweetal schuifkrachten levert een koppel dat gelijk is aan de helft van het uitwendig wringend moment M_t .

Uit evenwichtsoverwegingen moet gelden:

 $F_{\mathrm{H1}} = F_{\mathrm{H3}} = F_{\mathrm{H}}$ $F_{\mathrm{V2}} = F_{\mathrm{V4}} = F_{\mathrm{V}}$

We vinden dan voor de horizontale onderdelen:

$$1/2 M_{\rm t} = F_{\rm H} * h_0$$
 (28a)

en voor de verticale onderdelen:

$$1/2 M_{\rm t} = F_{\rm V} * b_0$$
 (28b)

De schuifspanningen in deze onderdelen zijn dan gelijk aan:

$$\tau_{1} = \tau_{h} = \frac{F_{H}}{b_{0} t_{1}} = \frac{M_{t}}{2 b_{0} h_{0}} \frac{1}{t_{1}}$$
(29a)
$$\tau_{2} = \tau_{v} = \frac{F_{V}}{h_{0} t_{2}} = \frac{M_{t}}{2 b_{0} h_{0}} \frac{1}{t_{2}}$$
(29b)

In algemene termen vindt men dus voor de grootte van de schuifspanning:

$$\tau_{i} = \frac{M_{t}}{2 b_{o} h_{0}} \frac{1}{t_{i}} = \frac{M_{t}}{2 A_{0} t_{i}}$$
(29)

Fig. 1 Spanningsverdeling bij kokerprofielen

a. Doorsnede met spanningsverloop

b. Krachten per onderdeel

c. Numerieke uitwerking

Inde formules (28) zijn b_0 en h_0 de lengtematen 'hart op hart' van de samenstellende delen en is A_0 het oppervlak dat door deze systeemlijnen wordt omsloten,

(het is dus niet gelijk aan het buitenoppervlak van de kokerdoorsnede A = bh).

Wringstijfheid van kokers

De afleiding van de wringstijfheid neemt bij de vloeistof-analogie wat meer tijd in beslag dan bij de membraan-analogie. Geïnteresseerden worden verwezen naar {7}.

We geven hier slechts het eindresultaat, eerst in algemene vorm, daarna toegespitst op een rechthoekige koker met in principe verschillende wanddikten.

Algemene formule, zie fig. 2

$$I_{t} = \frac{4 A_{0}^{2}}{\int ds / t}$$
(30)

Hierin is A_0 weer het oppervlak dat door de hartlijnen van de kokerdelen wordt omsloten en wordt *s* langs de hartlijnen gemeten; *t* is hierbij steeds de plaatselijke dikte.

Voor het concrete geval van fig. 2b vindt men:

$$I_{t} = \frac{4(b_{0}h_{0})^{2}}{\frac{b_{0}}{t_{1}} + \frac{h_{0}}{t_{2}} + \frac{b_{0}}{t_{3}} + \frac{h_{0}}{t_{4}}}$$
(31)

Voorbeelden:

Bij een koker met een constante wanddikte vindt men zowel uit (30) als uit (31):

$$I_{t} = \frac{4(b_{0}h_{0})^{2}t}{2b_{0} + 2h_{0}}$$
(32)

Voor de buisvormige doorsnede volgt uit (30):

$$I_{\rm t} = \frac{4 \left(\pi R_0^2\right)^2}{2\pi R_0 / t} = 2 \pi R_0^3 t \qquad (33)$$

Voor dunwandige buizen levert de uitdrukking: $2\pi R_0^3 t$ iets kleinere waarden dan de exacte waarde volgens formule [436-(40)], zie fig. 3.

Fig. 2 Algemene formule voor de wringstijfheid

a. Doorsnede van de koker

b. In rekening te brengen oppervlak A_0

Formule [436-(40)]

$$\begin{split} I_{p1} &= \frac{\pi}{2} \left(R_2^4 - R_1^4 \right) = \\ &= 4\pi \left(R_2 - R_1 \right) \frac{R_2 + R_1}{2} \frac{R_2^2 + R_1^2}{4} = \\ &= 4\pi t R_0 \left[\left(\frac{R_2 + R_1}{2} \right)^2 - \frac{2R_1R_2}{4} \right] = \\ &= 4\pi t R_0 \left[R_0^2 - \frac{R_1R_2}{2} \right] \approx 4\pi t R_0 \frac{R_0^2}{2} \end{split}$$

Formule [495-(33)]

Op deze wijze zijn beide formules in dezelfde vorm gebracht: $I_{p1} = I_{p2}$

20.7.9 MEMBRAAN-ANALOGIE

D Bij de analytische behandeling van het wringprobleem voert de St. Venant een – vooralsnog onbekende – spanningsfunktie Φ in. Hierbij wordt aangenomen dat de schuifspanningscomponenten uit deze spanningsfunctie kunnen worden afgeleid door differentiatie volgens onderstaande regels:

$$\tau_{xz} = + \frac{\partial \Phi}{\partial y}$$

$$\tau_{xy} = - \frac{\partial \Phi}{\partial z}$$
(34)

Door dit te doen wordt automatisch voldaan aan de evenwichtsvoorwaarde, die voor een elementair deeltje van de staaf kan worden afgeleid. Voorts kan een differentiaalvergelijking voor de spanningsfunctie Φ worden opgesteld.

We moeten dan nog wel de analytische functie Φ zien te vinden die tegelijkertijd ook aan de randvoorwaarden voldoet. Dit was ten tijde van de St. Venant een lastig probleem dat slechts voor een aantal eenvoudige doorsnedevormen tot een oplossing kon worden gebracht (1855).

Prandtl realiseerde zich dat de differentiaal-vergelijking voor de spanningsfunctie Φ dezelfde vorm bezit als de differentiaalvergelijking die geldt voor een membraan (dun vlies) onder alzijdige trek, en belast door een overdruk (1902).

Als gedachtenexperiment kunnen we uitgaan van een stijve vlakke plaat, met een gat erin dat de vorm van de doorsnede bezit. Over dit gat bevestigen we een strak gespannen vlies en brengen hierop een kleine overdruk aan. Het vlies zal enigszins bol gaan staan, en het vlies zal overal langs de randen van de doorsnede precies aanliggen, zo-

als is weergegeven in fig. 1a, b. De grootte van de schuifspanning in y-richting wordt dan

bepaald door de helling in z-richting. Uit een hoogtelijnenkaart voor de vorm van het membraan, kunnen dan de grootte en de richting van de schuifspanningen worden bepaald, zie fig. 1c.

Bij een gebogen rand is de helling in *n*-richting (loodrecht op de rand) gelijk aan de schuifspanning in *t*-richting.

Aangezien de helling in tangentiale richting langs de rand overal gelijk is aan nul, kunnen er dus geen schuifspanningen loodrecht op de rand optreden. Dit betekent dat bij de membraan-analogie altijd aan de in [487] genoemde randvoorwaarde is voldaan.

De hoogtelijnen geven precies de richting van de schuifspanningen aan, de grootte is omgekeerd evenredig met de afstand van twee opeenvolgende hoogtelijnen. In het midden van de doorsnede komen we 2 × dezelfde hoogtelijn tegen, de helling is hier dus gelijk aan nul. Opvallend is de stijle helling van het vlies bij de 'inspringende' bocht van de doorsnede, hier nemen de schuifspanningen dus sterk toe.

In termen van de stroomlijnen-analogie kunnen we de hoogtelijnen vervangen denken door stroomlijnen. De hoeveelheid getransporteerde vloeistof tussen elk tweetal opeenvolgende stroomlijnen is dan constant. Als de stroomlijnen elkaar plaatselijk dichter naderen, moet de stroomsnelheid dus toenemen.

497

U Wringstijfheid

Bij de afleiding van de analogie blijkt de inhoud van de lucht onder het vlies een maat te zijn voor de wringstijfheid. Voor een berekening dient dan de verhouding p/q bekend te zijn.

(p = luchtdruk; q = voorspankracht per eenheid van lengte in het vlies).

Maar ook zonder kennis van deze waarde is het direct duidelijk dat allerlei enkelvoudig samenhangende dunwandige doorsneden een wringstijfheid hebben die alleen afhangt van de breedte van de doorsnede en de totale lengte van het profiel, zie fig. 2a1.

Bij meervoudig samenhangende doorsneden wordt ter plaatse van het open gedeelte een vlakke gewichtsloze plaat in het vlies aangebracht, die dus niet bol gaat staan, maar wel met het omringende vlies mee omhoog gaat, zie fig. 2a2. Het volume onder het vlies neemt hierdoor sterk toe. Het is dan ook direct duidelijk dat bij vierkante en cirkelvormige dikwandige doorsneden een kokervorm maar weinig minder effectief is dan de doorsnedevorm zonder opening, zoals blijkt uit de vergelijking van fig. 2b1 met 2b2. De analogie vereist ook dat deze gewichtsloze gedeelten zich slechts horizontaal omhoog kunnen verplaatsen en niet mogen roteren. De grootte van de schuifspanningen moet dan weer omgekeerd evenredig zijn met de plaatselijke wanddikte van de koker, zie fig. 2c.

Bij een symmetrische dubbele koker blijkt de verticale 'tussenstijl' hoegenaamd niet mee te doen aan het krachtenspel, zie fig. 2d. Voor de berekening van de schuifspanningen en de wringstijfheid kan de invloed van deze stijl dus worden verwaarloosd.

Fig. 2 Vorm van het vlies bij de membraan-analogie

- a. Vergelijking van enkelvoudig en meervoudig samenhangende dunwandige doorsneden
- b. Vergelijking van een massieve vierkante doorsnede met een dikwandige vierkante koker
- c. Koker met ongelijke wanddikten
- d. Dubbele koker

498

20.8.1 DWARSKRACHTCENTRUM

Het dwarskracht-centrum speelt alleen een rol van enige betekenis bij dunwandige profielen waar de dwarskrachtvector niet samenvalt met de verticale symmetrie-lijn.

Bij de bepaling van de dwarskrachten en buigende momenten in een ligger, hebben we eigenlijk min of meer vanzelfsprekend aangenomen, dat de dwarskracht in een normale doorsnede door het zwaartepunt van de doorsnede zal gaan. Dit is in fig. 1a weergegeven voor een U-vormige doorsnede met een verticale symmetrie-as.

We draaien het profiel een kwart slag en nemen aan dat de dwarskracht weer door het zwaartepunt van de doorsnede aangrijpt. Er treden nu complicaties op, omdat de symmetrie-as geen verticale stand heeft maar een horizontale. Om de consequenties hiervan te doorzien, roepen we de schuifspanningsverdeling in herinnering, zoals die door de dwarskracht ontstaat [482-483]. De geschematiseerde spanningsverdeling is weergegeven in fig. 2a. De daaruit volgende schuifkrachten zijn weergegeven in fig. 2b.

We zien direct dat deze drie schuifkrachten ten opzichte van het zwaartepunt O een linksdraaiend moment leveren. De (verticale) resultante van deze drie krachten gaat dan niet door het zwaartepunt O, of door het lijf, maar ligt links van het lijf, zie KW-0 [014]. Dit punt P-op de horizontale zwaartelijn gelegen – wordt aangeduid als: *dwarskrachtcentrum*

Alleen als de werklijn van q_z door dit dwarskracht-centrum gaat, zal de elementair berekende spanningsverdeling optreden; dat wil zeggen:

- de normaalspanningen ten gevolge van M voldoen aan formule [427-(28)],
- de schuifspanningen ten gevolge van V voldoen aan formule [480-11] voor wat het lijf betreft, en verlopen driehoekig in de flenzen volgens [483].

Als de werklijn van de dwarskracht een excentriciteit ebezit ten opzichte van de verticaal door P, moeten we V eerst naar P verplaatsen. Hierdoor ontstaat dan een wringend moment ter grootte: $M_t = V * e$

In fig. 2 is de ligging van het dwarskrachtcentrum berekend voor het profiel van fig. [483-3b]. Hierbij is niet het daar berekende preciese spanningsverloop in het lijf en de flenzen aangehouden, maar is uitgegaan van de gemiddelde verticale schuifspanning in het lijf, zoals die ook is weergegeven in fig. [484-1c].

Fig. 1 Dwarskracht door het zwaartepunt a. De dwarskrachtvector valt samen met de verticale symmetrielijn

b. Er is géén verticale symmetrielijn

- Fig. 2 Ligging van het dwarskracht-centrum
- a. Schuifspanningsverdeling ten gevolge van de dwarskracht (geschematiseerd)
- b. Schuifkrachten in lijf en flenzen Ligging van het dwarskrachtcentrum (punt P)

Dwarskrachtcentrum; vereenvoudigde berekening Afmetingen doorsnede

h = 600 mm; b = 300 mm; t = 40 mm Dwarskracht V = 20000 N

- Lijf: $\tau_{gem} = V / \{t * (h t)\} =$
- $= 20000 / \{40 * (600 40)\} = 0.89 \text{ N/mm}^2$

Horizontale schuifkracht per flens:

- $F_{\rm H} = 1/2 \ \tau_{\rm gem} * t \ (b t/2) =$
- = 1/2 * 0.89 * 40 * 280 = 4984 N

Uit fig. 2a, b volgt overigens direct dat $F_{\rm H}$ vrijwel gelijk moet zijn aan 1/4 $F_{\rm V}$, dus 5000 N.

De excentriciteit e_1 ten opzichte van het lijf volgt uit: $F_V * e_1 = F_H (h-t)$

$$e_1 = \frac{F_{\rm H}}{F_{\rm V}} (h-t) = \frac{5000}{20\ 000}\ 560 = 140\ {\rm mm}$$

499

20.8.2 VERVORMING DOOR BUIGING DWARSKRACHT EN WRINGING

In de voorgaande paragrafen is gebleken dat bij dunwandige profielen enige voorzichtigheid is geboden voor wat betreft de vervormingen. In fig. 3 is een aantal van dergelijke profielen weergegeven.

Wringing

Alle enkelvoudig samenhangende doorsneden zijn wringslap (fig. 3a-d). Alleen meervoudig samenhangende doorsneden zijn wringstijf (kokerprofiel van fig. 3e).

Bij een vrije uitkraging moeten we met wringslappe liggers voorzichtig zijn, bij relatief kleine wringende momenten kunnen zeer grote verdraaiingen optreden.

Als dergelijke profielen echter op regelmatige afstanden worden ondersteund, dan komt een geringe wringstijfheid meermalen goed van pas. Het profiel kan zich dan gemakkelijk aanpassen aan vervormingen die andere onderdelen ondergaan, zie fig. 4.

Zuivere buiging

Alle getekende profielen zijn buigstijf om de *y*-as. Als we liggers van deze vorm als uitkragende ligger willen toepassen, moeten we zeer voorzichtig zijn met de verticale strip van fig. 3a. Bij de minste of geringste zijdelingse belasting kunnen grote verplaatsingen optreden. Alle andere doorsnedevormen hebben voldoende zijdelingse stijfheid. Bij een momentvector, die evenwijdig is aan de (horizontale) *y*-as, zullen de liggers a. - d. - e. zuiver verticaal verplaatsen. De vormen b. en c. zullen dubbele buiging ondergaan en daardoor ook zijdelings verplaatsen [460]. Als we doorsnede c. echter over 45° roteren, dan zullen ook hier alleen maar verticale verplaatsingen langs de symmetrieas optreden.

Buiging met dwarskracht

In fig. 3 is voor elke doorsnede aangegeven in welke richting de schuifkrachten in lijf en flenzen verlopen bij een neerwaarts gerichte dwarskracht.

In het lijf staat de richting van de schuifspanningen dan zonder meer vast. Verder weten we dat de schuifspanningen bij dwarskracht elkaar 'nalopen'.

Dit betekent dat de schuifspanningen op doorsnede b. een zijdelingse kracht naar rechts uitoefenen, zodat deze doorsnede niet zal roteren maar wel zijdelings verplaatsen. De doorsneden c. en d. zullen ten gevolge van de schuifspanningen wèl willen roteren. Het dwarskrachtcentrum valt dan ook niet samen met het zwaartepunt.

Fig. 3 Dunwandige profielen zoals die in aluminium worden uitgevoerd De pijltjes naast de doorsneden geven de richting aan van de schuifspanningen, die ontstaan ten gevolge van een (neerwaarts gerichte) dwarskracht

- Fig. 4 Invloed wringstijfheid
- a. Relatief stijve balk, rustend op lange dunwandige liggers
- b. Bij wringslappe profielen wordt de stijve balk ter plaatse van het lijf van de I-profielen ondersteund en de wringende momenten in de I-ligger blijven laag
- Bij wringstijve profielen rust de stijve balk op de randen van de profielen en de wringende momenten kunnen vrij groot worden

20.9 VERVORMING ELEMENTJE DOOR SCHUIFSPANNINGEN

□ We beschouwen een vierkant elementje onder 45° met de horizontale as, waarop in de ene richting trekspanningen σ werken en in de andere richting even grote drukspanningen σ , zoals is weergegeven in fig. 1a. We tekenen in dit elementje een kleiner vierkant elementje met de zijden evenwijdig aan de *x*- en *z*-as. In [413] is afgeleid dat op de zijden van dit elementje alleen maar schuifspanningen werken, eveneens ter grootte σ .

In [414] is vermeld dat onder invloed van trekspanningen het elementje wat langer wordt en tegelijkertijd door de invloed van de contractie-coëficiënt ook wat smaller. De trekspanning in U-richting veroorzaakt in de U- en Vrichting de volgende rekken:

$$\varepsilon_{U} = + \sigma / E$$
 $\varepsilon_{V} = -v * \sigma / E$

Ten gevolge van de drukspanning in *v*-richting ontstaan de rekken:

$$\varepsilon_V = -\sigma/E$$
 $\varepsilon_U = +v * \sigma/E$

Als we nu de rekken in de zelfde richting bij elkaar optellen, dan vinden we:

$$\varepsilon_{\boldsymbol{U}} = -\varepsilon_{\boldsymbol{V}} = (1+\boldsymbol{v}) * \boldsymbol{\sigma} / \boldsymbol{E}$$
(35)

Het buitenste vierkante elementje neemt een rechthoekige vorm aan, zie fig. 1b. Het daarbinnen liggende vierkante elementje neemt echter een ruitvorm aan; de oorspronkelijk rechte hoeken zijn niet langer recht. De vergroting of verkleining van de rechte hoek blijkt evenredig te zijn met de grootte van de schuifspanning. Dit is aan te tonen door de verplaatsingen van de punten P en Q te bepalen ten opzichte van punt O dat niet verplaatst.

Als absolute verplaatsingen voor P en Q vinden we met behulp van formule (35):

$$\Delta u = \Delta v = \varepsilon * \frac{a}{2} = \frac{a}{2} \frac{(1+v)}{E} \sigma$$
(36)

De horizontale en verticale componenten van deze verplaatsing bedragen: $\Delta x = \Delta y = 1/2 \Delta u \sqrt{2}$. We beschouwen vervolgens het lijnstuk P-Q. Punt P verplaatst een afstandje Δy omhoog en punt Q een afstandje Δy omlaag. De hoekverdraaiiing van dit lijnstuk bedraagt dus:

$$\Delta \psi = \frac{2\Delta y}{\frac{1}{2}a\sqrt{2}} = \frac{\Delta u\sqrt{2}}{\frac{1}{2}a\sqrt{2}} = \frac{2\Delta u}{a} = \frac{(1+v)\sigma}{E}$$
(37)

Het verticale lijnstuk PR ondergaat een even grote rotatie. De verkleining van de rechte hoek RPQ bedraagt dus:

$$\gamma = 2 \Delta \psi = \frac{2(1+\nu)}{E} \sigma$$
(38)

Fig. 2 Verband tussen schuifspanning en vergroting of verkleining van een rechte hoek

a. Even grote trek en drukspanningen in de *u*- en*v*-richting leveren in de *x*- en *y*-richting alleen maar schuifspanningen
b. Vervormingen t.g.v. van deze spanningen

c. Verplaatsing en rotatie van het lijnstuk P-Q.

We definiëren nu als glijdingsmodulus G:

$$G = \frac{E}{2(1+v)} \tag{39}$$

Bedenken we verder dat de schuifspanning τ even groot is als de normaalspanning σ , dan kunnen we (38) met behulp van (39) achtereenvolgens schrijven als:

$$\tau = \frac{E}{2(1+\nu)} \gamma = G \gamma \tag{40}$$

INLEIDING

De trefwoordenlijst van April 1999 heeft betrekking op de volgende delen:

- 0 BASISKENNIS
- 2 LIGGERS
- 3 VAKWERKEN, STANDZEKERHEID
- 4 SPANNINGEN
- 5 VERVORMINGEN

Deel 1 is in bewerking en (nog) niet verkrijgbaar in de bouwshop. Het omvat enkele elementaire mechanica-modellen, waarbij de hoofdkrachtsafdracht voornamelijk plaats vindt via normaalkrachten. Hierbij zijn twee hoofdbestanddelen te onderscheiden:

- 1 De grafische constructie met poolfiguur en stangenveelhoek, voor koorden, bogen, koepels en gewelven .
- 2 De Stapelsteen-mechanica voor metselwerk

De combinatie van 1 en 2 geeft een goed inzicht in de hoofdkrachtswerking van historische gemetselde of gestapelde gebouwen zoals kathedralen of tempels uit de oudheid. Met behulp van 1 is eveneens inzicht te verkrijgen in enkele moderne constructievormen, zoals kabelconstructies.

In de andere dictaten wordt incidenteel verwezen naar deel 1. Studenten kunnen bij de leerstoel Krachtswerking díe onderdelen verkrijgen waarvan ze gebruik willen of moeten maken.

Hetzelfde geldt voor de onderstaande delen, waarvan de opzet momenteel wordt gewijzigd :

- 6 Portalen en Raamwerken
- 7 Spanningsleer

Zoals vermeld heeft de voorliggende trefwoordenlijst uitsluitend betrekking op de volgende delen: 0 - 2 - 3 - 4 - 5.

Ze wordt in principe aan alle nieuwe drukken van de dictaten toegevoegd en zonodig aangevuld en uitgebreid.

TOELICHTING TREFWOORDENLIJST

Het eerste cijfer van elke pagina waarnaar wordt verwezen geeft het betreffende deel aan. In deel 5 liggen de pagina's dan tussen 500 en 599. Een cursieve nummering – bijv. 504 – heeft betrekking op het voorwerk aan het begin van deel 5, terwijl een notatie als A-504 betrekking heeft op de appendix aan het eind van dat deel. Voor een goed overzicht zijn de bladzijde-nummers die op hetzelfde deel betrekking hebben, zoveel mogelijk onder elkaar geplaatst.

De hoofdtrefwoorden beginnen steeds met een hoofdletter en zijn alfabetisch geordend.

Bij diverse hoofdtrefwoorden is gebruik gemaakt van een onderverdeling, beginnend met een streepje en dan de omschrijving beginnend met een kleine letter in een kleiner lettertype, bijv.

Actie = Reactie

- voor uitwendige krachten
- voor inwendige krachten

Bij deze onderverdeling is meestal een systematische opbouw gebruikt en geen alfabetische. Kijk dus even wat er staat.

Bij sommige uitgebreide opsommingen is het hoofdtrefwoord weergegeven in hoofdletters, de primaire onderverdeling met 1, 2, 3 De secundaire onderverdeling wordt dan aangegeven met één streepje en de tertiare met twee streepjes.

BEREKENING LIGGERS

- 1 Vrij opgelegde ligger
- belasting één puntlast
- belasting meer puntlasten
- idem grafisch

Als hetzelfde hoofdtrefwoord meer dan eens wordt genoemd, omdat er in de onderverdeling andere aspecten worden behandeld, dan wordt dat met romeinse cijfers aangegeven

Actie = Reactie – voor uitwendige krachten – voor snedekrachten Assenkruis (rechtsdraaiend) – bij liggers	031 009	213 221 216	428		Cremona (Vakwerken) – werkwijze algemeen – uitgewerkt voorbeeld De St. Venant		340 340-3 342-3	41 345 	
					Deuvels			485	
Basis-belastinggevallen		244			Diagrammen snedekrachten	(V - M)			
BASIS-LIGGERS				508-511	1 Liggers				
Diagrammen voor M,V,	, φ, w			512-519	 belasting door puntlasten 	228-23	5		
- Liggers op twee steunpunt	ten, q-la	ast		512-513	– – N-V-M bij pendelstijlen	213			
 Eénzijdig ingeklemde ligg 	gers, res	р.			 belasting door q-last 	238-24	0		
belast door K, F, q (verge	et-me-r	nietjes)		514-515	 belasting lineair variërend 	241			
- Liggers op twee steunpunt	ten,				- belasting: puntlasten + q -last	242-25	3		
belast door randmomenter	1		2	518-519	Differentiaal-rekening				
Beddingsmodulus	056				– grondbeginselen	255			
Belasting I					– differentiëren	256-25	7		
- permanent (eigen gewicht)) 074-()75			Dimensies (omschrijving) 011	1			
 veranderlijk (personen, 					Dimensioneren:				
meubilair, sneeuw)	076-0)77			 op normaalkracht (voorbeelde 	en)		415	
– wind	078-0)79			 op buiging (voorbeeld) 			427	
 bijzondere belastingen 	080				Doorbuiging liggers			50)9
 opgelegde vervormingen 	082				Doorgaande ligger			530-53	34
 invloed temperatuur 	097				[<i>zie ook</i> : LIGGER]				
Belasting II (nomenclatuu	r)				 principe van de berekening 			530-53	31
 bezwijk- belasting 					 berekening bij een q-last 			532-53	33
= breukbelasting	071				 – gelijke overspanningen 			534-53	35
- rekenwaarde v.d. belasting	; 071				 – invloed randvelden 			536-53	39
 representatieve belasting 					 – afwisselend belaste velden 			537	
= extreme belasting	076				– – vuistregel doorgaande ligg	er		539	
 momentane belasting 					DOORSNEDE-GROOTHED)EN			
= gemiddelde belasting	076				1 Analytische afleiding alge	meen:			
Belasting-afdracht (system	atiek)	213			 oppervlakte A 			428	
- afvoer windkrachten via st	ijve sch	ijven 368	3-370		 lineair oppervlakte-moment . 	S		429	
 – voorbeeld analytisch 		371	L		 kwadratisch oppervlakte-mon 	nent I:			
 – voorbeeld numeriek 		372	2		 – berekening via integraalrek 	ening		430-436	
- afvoer verticale en horizont	ale kra	chten 373	3		 – berekening via het spannin 	gsverloop		443-447	
Belasting op liggers					 oppervlakte-product I 			430	
 symmetrisch en keersymm 	etrisch	376	5-377		 weerstandsmoment W 			421; 427	
Bollenmodel			405		– zwaartepunt			429	
Buigend moment		218			2 Gebruik van tabellen			442	
Buigspanning			426		Driehoekige vakwerken		352		
Buigsterkte (hout)			427		DRIE-SCHARNIERSPANT		387	54	0
Buigstijfheid			425		– definitie	203			
					 vergelijking met twee-scharni 	erspant 3	380		
Centrische druk of trek		~	416		 bepaling snedekrachten: 				
<i>zie ook:</i> SPANNINGSVEI	RDELI	NG			N en V	3	388		
Cirkel van Mohr			441		M bij een regel onder een h	elling 3	389		
Constructiedelen:					M bij een verticale q-last	2	390-39) 3	
 blok- en lijnvormig, vlak 	084-0	85			M bij een asymmetrische	e q-last	394-39	∂ 5	
Constructieve vormgeving					– – M bij een horizontale puntl	ast 3	397		
 omschrijving vakgebied 	<i>017</i>				- R en M bij willekeurige belast	ingen 3	398-39) 9	
Contractie-coëfficiënt					Druk; drukkracht	2	309	416-417	
 definitie 	095-0	96	414						
 numerieke waarden 	096								

Druklijn		396	468-47	71	Hoofdassen
– definitie		205	468		Horizontale belastin
- toepassing bij driescharnie	rspanten	393-	390	71	– op portalen
- toepassing bij kolommen			408-4	/1	- op een driescharnie
Drukpunt			409	C 2	T
Dubbele buiging	005		400-40	33	Incasseringsvermoge
Dwarscontractie	095		414; 4	22	Ingeklemde ligger
Dwarscontractie-coefficien	nt =				Inklemming
= contractie-coefficient	095		414		- verend
– numerieke waarden	096	-			– volledig
Dwarskracht	213	8			 invloed ligging ople
Dwarskrachtcentrum			498		Integraal-rekening:
Dwarskrachtenlijn	223	8-235	_		 grondbeginselen
[zie ook: Diagrammen sne	edekrachten	(Ligger	rs)]	ļ	 bepaalde integraal
			· · · · · · · · · · · · · · · · · · ·		– integreren
Eenheden (omschrijving)	011				(analytisch en grafis
Eenzijdig ingeklemde ligg	er 20	7;270		514	Inwendige hefbooms
Eigen gewicht	075			Ì	······
Elasticiteitsmodulus	094; 096		414		Kantelen
– numerieke waarden	096				Keersymmetrie [zie:
Evenwicht					KERN
 indifferent 	037				1 Voor spanningsber
– labiel	037; 042-04	43			- bij rechthoekige d
– stabiel	037; 042-04	43; 052	2-053		– – volledig meewerl
- overgang stabiel \rightarrow labiel	066-067				 – gedeeltelijk meev
Evenwichtbeschouwingen	liggers 217	7			2 Onderdeel constru
Evenwichtsvoorwaarden	026-029				= Stijve kern
 in het platte vlak 	034				KNIK
- in de ruimte	036				 omschrijving
Excentriciteit			471		 invloed vervorming
Excentrisch belaste doorsn	ede		470		 berekening volgens
Excentrische druk of trek			417: 4	75	 verklaring knikverse
<i>zie ook</i> : Buiging plus nor	maalkracht	}			1 Basis-belastingge
Excentrische dwarskracht	<u>_</u>	1		}	 ongeschoorde portal
<i>zie</i> : Wringing plus dwars	kracht 7		498		 geschoorde portalen
					2 Knik in onderling
Flens			485		3 Knik bij buiging 4
Fundering	055				 buigbelasting sinusy
– op staal	055				Knikkracht
- op palen	055				Kniklengte
- schematisering ondergroud	056-057				 – schetsen van kniklij
					Knikspanning
Gaapvergelijkingen				533	 algemene formulerin
Gedeeltelijk meewerkende	dsn		475		 globale dimensioner
Geknikte ligger:					- - bii $N + M$ (yoorb
- L-vorm				542	Kolom
- T-vorm				543	Koord
- spanningsverdeling in de kr	nik		544	-545	Konnel
Geometrische liggerstiifhe	id		544	549	Krachten-methode
Geometrische stiifheidever	houding			541	
Gereduceerd momentenvlo	k			572	
Gliidingemodulus (oflaiding	r)		400 A	515	
Gravitatiawat	6) 030		77711		
Grand (signation	050				
Giona (eigenschappen)	037				

Hoofdassen			425	
Horizontale belasting				
 op portalen 		383		
 op een driescharnierspant 		397		
Incasseringsvermogen 081				
Ingeklemde ligger	209			
Inklemming		356		
- verend	207	356-35	57	
 volledig 	207-209	356-35	57	
 invloed ligging oplegreacties 	208			
Integraal-rekening:				
– grondbeginselen	258-259			
 bepaalde integraal 	260			
– integreren				
(analytisch en grafisch)	261			
Inwendige hefboomsarm			420	
Kentelan 052				
Kantelen U52	4			
KEDN	unej			
LEKIN	~			
1 voor spanningsberekenin	g 10		175 1	76
- bij rechtnoekige doorsned			4/3-4	/0
volledig meewerkende ds	n 		4/0	
gedeellenjk meewerkende	asn		4//	
- Stiive kerr		265		
- Sujve Kenn		305	116	500
- omschrijving			410	582
- onischifyning				582
- invided vervorningen			591	585
- verklaring knikverschiinsel			504	-202
1 Basis-belastinggevallen				500
- ongeschoorde portalen				500
- geschoorde portalen				501
 2 Knik in onderling loodred 	hte richti	ngen		591
3 Knik hi buiging + norma	alkracht	iigen		506
 buighelasting sinusvormig 	aikiaoin		507	-598
Knikkracht			571	584
Kniklengte			585.	587
– schetsen van kniklijnen			505,	589
Knikspanning				592
- algemene formulering				595
 globale dimensionering (voc 	orbeeld)		592	-593
- - bii $N + M$ (voorbeeld)				599
Kolom			466	.,,
Koord		300-30)1	
Koppel 004		200 20	-	
Krachten-methode				529

KRACHT

KRACHT				MATERIAAL EIGENSC	HAPPE	N		
[zie ook: SAMENSTELLEN	I,			1 constructiemateriaal	094			
Verplaatsen, Ontbinden van	krachte	en]		2 ideaal materiaal (definit	ie) 095			
 omschrijving 	000-0)01		- contractie-coëfficiënt	095-	096		
 definitie volgens Newton 	032			– elasticiteitsmodulus	095-	096		
- actie = reactie	031;	041		– uitzettingscoëfficiënt	097			
- evenwichtmakende kracht	010			Mechanica (definitie)	016			
- ontbondene van een kracht	=			Meerbeukig portaal		38	2	
component van een kracht	007			Meewerkende doorsnede		50	477	
– resulterende kracht	010			Membraan-analogie			496	
– tekenafspraken	012			Methode Cross			170	548
- weergave:				Moment	004			540
– – grafisch	008:0	01		- definitie statisch moment	004			
– – analytisch	001			 definitie buigend moment 	001	218		
Krachten op liggers:				– tekenafspraken	033	210		
- actie-krachten (uitwendige)	kr.)	207-209: 214		MOMENTENI IIN LIGG	FR			
- reactiekrachten		214		[zie ook: LIGGERS]				
– – tekenafspraken		216		1 Basis-belastinggevallen:				
- verwisselen actie- en reactie	-kr	210		- vrij opgelegde ligger met 1	nuntlast	211 216		
- inwendige krachten (spanni	ngen)	209		- viij opgelegde ligger met r	lost	244-240		
Krachtendrieboek	007	20)		- vij opgelegde ligger met één	-iast	244-24/		
Krachtenveelhoek	011			- untragende ligger met ele	puntiast	245		
Krachtewerking	011			- unkrägende ligger met q-la	st	245		
(omschrijving vekgebied)	016			2 Vallerende belasting				
(onischifying vakgebied)	010	100 5	04 505	– Max. en minimum <i>M</i> -lijner	1	006		
Kromtestreel		425 5	04-303	q-last		286		
Kiointestraal		419; 425	440	- - Verplaatsbare puntlast		287		
Kwadrausch oppervlaktenio	oment	425; 428;	, 448	3 Visualisering van de vor	m			
- van een drienoek		435		m.b.v. een koord		296-299		
- van een rechthoek		432		Momentensom				527
- van een cirkelvormige dsn		436		Momentenvlak-methode				574
– van een parallelogram		435		– methode I (vrij opgelegde I	ligger)		568	8-572
- van dunwandige profielen		449		 methode II (éénzijdig ingel 	clemde li	gger)	574	-575
L-vormige ligger			542	Neutrale liin			418	
Labiel evenwicht	042			Newton	032		110	
LIGGER				Normaalkracht	098		417	
– definiție		202 301-302		Normaalkracht + buigend r	noment		46A	
 vrii opgelegd (rol + scharnie) 	er)	206	568	Normaalspanning	nomoni		107	126
 vrij opgelegd met overstek 	-)	232: 273	200	Normale doorsnede			400,	420
 – eenziidig ingeklemd 		207: 209: 225		Nulstaven (vakwerk)		338	400,· 2330	411
- over meer steunpunten			535					
– – extra inwendige scharnier	en	210: 212: 289-29)1	ONDERSTEUNINGEN				
– – zonder inwendige scharni	eren	290-291		[<i>zie ook</i> : OPLEGGINGEN	1			
- ondersteund door pendelstiil	en	210		1 Ondersteuningen I	1			
 – – berekening oplegreacties 		212-213		- continu	030			
instabiele varianten		211 213		- liinvormig	039			
Liif		485		- puptyormig	039			
 Liinvormige elementen		.05		- star	039			
- koorden liggers staven		300-301		- verend	040	055 060		
Liinspanningstoestand		410-411		2 Ondersteuningen II	040,0	000-000		
Lineair oppervlakte-momen	t	474 478.	479	- inklemming		207 200		
Lineair variërende belasting	. .	241		- pendelstijl		201-209		
Lineaire uitzettingscoëffic	, 097	- T1				210-211		
Encone unzennigsevenne.	571			- schernior		200-208		
				- scharmer		200-208		

ONDERSTEUNINGEN		Raamwerk (omschrijving)	203	
3 Ondersteuning rechthoekig blok (3	D)	 – éénbeukig raamwerk = 		
 in één punt (koord) 	040-041	stapeling van portalen		
 in drie punten (star) 	044-046	 – verticale belasting 	381	
 continu door de ondergrond 		 – horizontale belasting 	383-385	
 – alleen verticale belasting (e.g.) 	059	Randvoorwaarden 091	259; 270	
 – alleen horizontale belasting (wind) 	060	 invloed op verplaatsingen ligge 	r 237	
 – verticale + horizontale belasting 	062-063	Rechthoekige staafwerken	312	
 – gedeeltelijk meewerkend grondvlak 	064-065	Regel (constructiedeel; definiti	ie) 202	540
Ontbinden van krachten		Regel van Steiner	430-	433
1 In het platte vlak:		Rek	414;	423 557
 inleiding eenvoudige gevallen 	022-023	Rekstijfheid	414	557
 langs drie gegeven werklijnen 	024-025	Relatie buigend moment - verv	orming	
2 In de ruimte	035	$(M - \kappa)$ diagram		502
 Ontbondenen (van een kracht) 	008	Relatie vervorming en belastin	g (φ,w - q)	506-507
OPLEGGINGEN	087	Resultante 008		
1 Ideale opleggingen:		– van twee krachten 010		
rol, scharnier, volledige inklemmin	g	Rol, Roloplegging 088		
– ruimtelijk	088			
 in het platte vlak 	089	SAMENSTELLEN VAN:		
2 Realistische opleggingen		1 Krachten		
– voorbeelden	090	 Twee krachten door één punt: 		
Oplegreacties ligger (berekening):		 – analytische oplossing 	008	
 vrij opgelegde ligger 21 	9	– – krachtendriehoek (grafisch)	007	
 éénzijdig ingeklemde ligger 22 	5	– – parallellogram van krachten	007	
Oppervlakte	428	– Meer krachten door één punt:		
Oppervlakte-moment;	425; 439	– – krachtenveelhoek (grafisch)	011	
[<i>zie ook</i> : Doorsnede grootheden]		– Krachten niet door één punt:		
Oppervlakte-produkt;	425	– – inleidende beschouwingen	013	
[<i>zie ook</i> : Doorsnede grootheden]		– – analytische opl. (bewerkelijk) 017-019	
Optimaliseren ligger:		grafische oplossing	016	
– door verplaatsen v.d.opleggingen 28	8	– Krachten zijn evenwijdig:		
Overgangsmoment	533	– – analytische oplossing	020-021	
		2 Kracht + koppel	015	
Paraboolvormige vakwerken	350	3 Momenten	033	
Parallellogram v. krachten 007		Scharnier	088	
Pendelstijl 21	0	Schematiseren, Inleiding	068-069	
Permanente belastingen 074		Schematiseren van:		
Polonceauspant	315	– de constructie	083	
Poolfiguur 29	3	– constructie-onderdelen	086	
PORTAAL		– materiaal-eigenschappen	094-095	
1 omschrijving 20	2-203 540	– opleggingen	087; 091-093	
- eenbeukig, meerbeukig 20	3	Schiiven	368: 37	1-373
- globale analyse	378-380 546-547	Schoren	367	
2 Berekening		Schuifspanning algemeen		408: 411
- onder een verticale <i>a</i> -last		Schuifspanningsverloop		,
– – vergelijking met doorgaande ligger	546-547	- ten gevolge van dwarskracht		480-485
berekening doorgaande liggers	548-549	 ten gevolge van wringing 		487-494
- twee-scharnierspant	550-551	Snede-krachten (definitie)	218	.07 777
- onder een horizontale puntlast	359: 383	- Buigend moment M	218	
- ligger op twee ingeklemde stillen	552	– Dwarskracht V	218	
- volledig ingeklemd portaal	554-555	- Normaalkracht N	218	
- algemene formules portalen	555	- Tekenafspraken N. V. M	224-225	
G	+++			

– Tekenen v. diagram. N, V, M 226-235

S

Sneeuwbelasting	077			Stabiel evenwicht	042				
Soortelijke massa van lucht			401	Stabiliteit	037; (070	354		
SPANNING I				Stabiliteit (constructie-eis)	073				
1 Algemeen			401; 406	- 1e orde stabiliteit; [zie:	Standz	ekerh	eid]		
- in gassen en vloeistoffen			401	- 2e orde stabiliteit; [zie:	Knik]		1		
 in vaste stoffen 			402-403	Standzekerheid (omschrijv	ing)		354-	355	
 in steenachtige materialen 			404-407	Stangenveelhoek	0,	293			
2 In een ideaal materiaal				Stapelbouw 3D					
– definitie			406	 verschillende wijzen van st 	apelen		360-	361	
– notatie			408-409	- standzekerheid			362-	363	
– teken (2D)			408	– – opbouw uit liinvormige	elemente	n	364-	366	
– teken (3D)			409	 – opbouw uit vlakke eleme 	enten	-	368-2	369	
SPANNING II (naamgevin	g)			Stapeling van portalen			381	/0/	
1 Buigspanning =	0/			Statisch bepaald hoofdsyste	em		501		530
= lineair verlopende normaal	Ispannii	ng	426: 465	Statisch bepaalde construct	ie				550
– formules	L	0	426-427	- omschrijving	10	204			528
2 Normaalspanning (consta	nte spa	nning)	408: 426:465	 berekening statisch benaald 	le ligger	201			502
3 Resulterende spanning			408	Statisch benaalde staafwerk	ren				502
4 Schuifspanning t.g.v. dwa	rskracl	ht bii:	408: 456	en vakwerken			308		
- een rechthoekige dsn	1011100	iii oiji	481	Statisch moment			508		
 een samengestelde rechthoek 	ige dsn		478-480	(= lineair oppervlakte-mom	ent)			128	
 – dunwandige profielen 	190 don	L	482-483	Statisch onbenaalde constru	iciii)			420	
– – vereenvoudigde berekenin	σ		484	- omschrijving	icues	204			520
5 Schuifspanning t g v wri	noino		487-493	 berekening statisch onben 1 	ligger	204			502
6 Belang horizontale schuife	an hii	huiging	485	Steenachtige materialen ?	nggei	205		404	505
Spannings-rek-diagram	ւթ. օդ	Juiging	405	Sterkta (constructia ais)	071			404	
Spannings rok diagram	SDA NN	INGSVI		Stiifbeid (constructie eis)	071				
SPANNINGSVERDELING	T			Cross stiifboid (- liggerstiit	U12 fload				511
1 Bij één besisbelestinggeve	1			- Cross-sujmeid (= liggersuj	(neid)				541
t g v Buigende momenten	u		118 126	- Staal-Sujineid					541
t g y Dworskrochten			410-420	definition	,	202			5 40
t g y Normaelkrachten	004		4/0-404	- definitie		202	265		540
t g w Wringende memorten	094		410-417	Sujve kern			365	407	
- t.g.v. while he have a false			400-497	Stroomlijnen-analogie				487	
DIJ KOKEIPIOHEIEH	т		494-497	Structuur-Mechanica				404-4	107
SPAININGS VERDELING	ш		450	Stuik					557
2 Spanningscombinaties	11		452	Stuwdruk (wind)	078				
- teken van de veerkrachtsgeva		- 11	433	– numerieke waarden	0/9		~~~		
3 Combinaties van veerkrac	htsgev	allen	454-455	Stijgende diagonalen			327		
- buiging + dwarskracht			456	SUPERPONEREN VAN					
- – buiging om de y-as of de z-	-as		458-459	MOMENTENLIJNEN LIC	GERS	215-2	239		
- – dubbele buiging			460-463	Overzicht methoden I, II, II	1	278			
- buiging + normaalkracht			464-467	I Splitsen van de belasting					
– – invoering druklijn			468-469	 momenten van gelijk teken 		279			
excentrisch belaste rechth.	dsn.		470-471	 momenten van ongelijk teke 	en	280			
 – dubbele buiging + normaal 	kracht		474	– voorbeelden		281			
Spant				II Splitsen van de ligger in	moten	282			
- omschrijving	203	308		 combinatie van I en II 		283			
- twee-scharnierspant	203			III Verplaatsen v. d. opleggi	ngen	284			
- drie-scharnierspant	203		407	 combinatie van II en III 		285			
Staaf (definitie)	202	300-30)1	Symbolen					
Staatwerk		300-31	.3	 omschrijving 	010				
- driehoekig stramien		302		 lijst van symbolen 	012				
 rechthoekig stramien 		303		Symmetrie en Keersymmetr	rie				
 – buigvaste verbinding stave 	n	304		 belasting op koorden 		297			560
				 belasting op liggers 		296-2	297		

Tekenafspraken vervormingen:

	ngen.				
– helling					505
 kromming 					505
– zakking					505
Teken van snedekrachten		224	1		
– tekenafsn r aken				431	
Tomporotuur	007			151	
Temperatuur	097			400	
Tensor				408	ł
Traagheidsmoment			_	428	
<i>zie</i> : Kwadratisch opperv	lakte-	mome	ent		
Trek, trekkracht (vakwerk)		309		
Twee-scharnierspant			378	540); 550
Uitzettings-coëfficiënt	097				
Vakwerken (omschrijving)	203	314		
– vakwerkvormen	,		315		
_ schematisering			216		
- schemansering		202	310		
vakwerkiigger		203	514		
Vakwerkspant		203	315		
Vallende diagonalen			327		
Variërende buigstijfheid					573
Vector					
 kracht-vector 	008	001			
 moment-vector 	033				
Veerkrachtsgevallen				452-45	55
Veerstiifheid	064				1
Veranderlijke belastingen	074				
on vloeren	076				
Verende interenting	070	007			
		207			
Veren-model					
 voor een buigend moment 	op een	staaf	099		
 voor een normaalkracht op 	een sta	aaf	098		
 voor de ondergrond 			056-05	7	
gedeeltelijk meewerkend	l grond	vlak	065		
Vergeet-me-nieties	U			517	. 576
- toepassingen				520	521
- tocpassingen	11			520	505
- controle basis-belastinggev	/allen			524	-525
Verplaatsen van een kracht	[
 langs de werklijn 	001				
 buiten de werklijn 	014				
Verplaatsingsmethode					529
Versterkte balken					564
Verstijvingskruis			367		
Verticale schiiven			368		ļ
VERVORMINGEN I			500		
1 Dringing					
 bij een lijnspanningstoesta 	nd			414	
 bij zuivere buiging 				418	
- bij wringing + dwarskracht				499	
 bij zuivere afschuiving 					
– – bepaling glijdingsmodul	us			A-400	

2	Oorzaak vervormingen bi	j ligg	ers			
_	door buigende momenten	,				565
_	door normaalkracht					558
_	door schuifspanningen				A-4(00
3	Constructie-type					
-	vrij opgelegde ligger		233	3		
-	 invloed randvoorwaarden 		23	7		
V.	ERVORMINGEN II : Rek	enme	thod	iek bij:		
1	Normaalkrachten				550	6-564
-	bij twee geschoorde staven				558	8-559
	bij een symmetrisch belast ko	oord				561
-	bij vakwerken (Williot)					563
_	bij een versterkte balk					564
2	Buigende momenten anal	ytiscl	1			
-	benodigde differentiaalvergel	lijking	5			565
-	splitsen van de diffenrentiaal	vergel	ijking	[566	5-567
5	Buigende momenten grafis	sch:				
IVI	omentenviak-methode I,					
-	voor vrij opgelegde liggers				558	5-569
-	- belast door een puntlast				570)-5/1
_	- Delast door een q-last Duigende momenten grafie	- ah				572
4 M	omentenvlak-methode. II	scn:				
1.1	voor éénzijdig ingeklemde lig	TOOTO			57/	1 570
_	- recapitulatie vergeet me ni	eties			576	577
	 algemene toenassing 	cijes			570	578
_	 willekeurig gekromde ligge 	-r				570
_	volledig ingeklemd portaal	-1				580
_	drie-scharnierspant					581
	Verwelving				486	501
٧l	ak staafwerk			308	400	
vi	akke spanningstoestand			500	412-4	413
vi	akke doorsneden bliiven vl	ak			418	115
Vo	olledig ingeklemd portaal				110	554
Vo	olledige inklemming 088-0)89	209			001
Vo	lumegewicht 075					
Vo	orschriften:					
_	inleiding 070					
-	overzicht TGB 1990 070					
Vo	rmvastheid staafwerken			305-30)7	
	driehoekig stramien			310-31	1	
	rechthoekig stramien			312-31	3	
Vr	ij opgelegde ligger		206;	270		
W	aterdruk			402		
We	erstandsmoment			421	427-4	128
We	erkliin	007		421,	727-7	120
We	et van Hooke	009		414		557
We	etten van Newton:	007				557
1	Gravitatiewet	030				
2	Bewegingswetten	031				
_	wet van de traagheid	031				
- 1	kracht = massa \times versnelling	031				
	actie = reactie	031				
3	Relatie kracht - massa	032				

Williot diagram		562-563
Windbelasting	078	
– winddruk	079	
 windzuiging 	079	
 windvormfactoren 	079	
Wrijving	047	
 bij een horizontaal contactvlak 	047	
 bij een hellend contactvlak 	048	
 wrijvingscoëfficiënt 	047	
Wringing plus dwarskracht		498
WRINGSTIJFHEID		
1 Massieve profielen		
 rechthoekig profiel 		488
 cirkelvormig profiel 		492-493
2 Dunwandige profielen		
 enkelvoudig samenhangend 		491
 meervoudig samenhangend 		494-495
visualisatie via de membraan-	analogie	496-497
Zeepvlies-analogie (wringing)		487
Zuiver buigend moment		424
Zuivere buiging		418
Zuivere druk of trek		416
Zuivere wringing	486	
Zwaartelijn		429
Zwaartepunt (rechth. blok)	038	424; 429

·

012770-01