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INTRODUCTORY REMARKS 
 

These notes are part of the lecture module CIE4145 “Dynamics and Introduction to 

Continuum Mechanics” for international MSc-students in Civil Engineering at the Delft 

University of Technology. The theory and examples are presented in such a way that the 

reader should be able to study this subject as a “self-instruction” module. Apart from these 

notes some additional material can be found on the web page via the internet URL: 

 

 http://icozct.tudelft.nl/TUD_CT/index.shtml 

 

Although this material has been prepared with great care, faults or errors may occur. I would 

very much appreciate the report of such faults or errors.  

 

The lecturer, 

 

Hans Welleman 

November 2009 – 2018 (unrevised) 

j.w.welleman@tudelft.nl 
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1. INTRODUCTION INTO STRESSES AND STRAINS 

In this module the relation between stresses and strains in a continuum will be 
described.  With the definition of the stresses in 3D the limit state of a stress 
combination will be examined based on two distinctive plasticity models like von 
Mises and Mohr.  
In order to do so the reader will be made familiar with the definition of stresses, 
strains and the constitutive relation between these stresses and strains. The 
properties of stresses and strains such as transformation rules for different 
coordinate systems can be formulated with help of the definition of a tensor. Both 
stresses and strains are tensors, which will be shown in this part of the lecture 
notes, and therefore have the same transformation rules. The transformations 
can be done analytically but also graphically with help of Mohr’s circle. Although 
graphical methods seem to be somewhat old-fashioned they have advantageous 
properties which will be illustrated with examples.  

1.1 Stresses in 3D 

From the well known definition of a stress which is a Force per Area the stresses can be 

distinguished into normal stresses and shear stresses. A normal stress acts in the direction 

normal to the plane and a shear stress acts along a vector in the plane. Based on a three 

dimensional coordinate system x-y-z we can define three stresses acting on a plane. If the normal 

vector of the plane coincides with the x-axis, the in plane axes are y and z. The plane is therefore 

called a x-plane (normal in the x-direction).  

 

 

 

 

 

 

 

 

 

Figure 1.1 : Normal and shear stresses 
 

Stresses will be denoted with a double index, one for the plane and one for the direction. The 

normal stress acting on a x-plane, acts in the x-direction and will be denoted as: 
 

     
 

 
 

The two shear stresses acting on the x-plane with directions into y and z will be denoted as : 
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σ
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The positive directions of stresses are well defined. On a positive x-plane (direction of the outer 

normal of the plane coincides with the direction of the x-axis) a positive stress acts in the positive 

coordinate direction (left side of fig. 1). On a negative x-plane (outer normal of the plane 

coincides with the negative x-axis) a positive stress acts in the negative coordinate direction 

(right side of fig. 1). 
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For a cube with six faces the following stresses can be found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 : Stresses in 3D 

 

Out of the six faces there are only three different planes : 
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From this it can be seen that there are only 9 different stresses as shown in figure 2.   
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Assignment: 

 

Check for your self the equilibrium of forces due to the shown stresses in figure 1.2, acting on a cube with  

size dx, dy and dz. How many independent stresses do we really need ? 

These nine stresses can be presented as a transposed vector : 
 

 ( )
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T
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In this presentation the normal stresses are placed in front. Another possible presentation is a 

matrix presentation: 
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The internal stresses are the result of an externally applied load. From the equilibrium equations 

a relation can be found between the stresses and the externally applied stress. In figure 3, a small 

specimen loaded with an external stress p on a surface A is presented with the defined stresses on 

the other surfaces which coincide with the x-, y- and z-planes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 : Specimen in 3D 

 

The stress p has components px, py and pz. The surface A has an outer normal unit vector n with 

components nx, ny and nz. The size of the x-, y- and z-planes can be found with: 
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in which the angle is presented as the angle between the two specified vectors (e.g. (n,x), (n,y), 

and (n,z)).  
 

Equilibrium demands equilibrium of forces. For each stress acting on a surface the resulting 

force can now be determined. The equilibrium conditions in x-, y- and z-direction yield : 
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With use of (1) these equilibrium conditions can be rewritten as: 
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This result can be presented in matrix notation as: 
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This result shows the relation between a stress p at a surface and the normal n to this surface. 

The matrix has to be a symmetrical one (prove this with the assignment of page 2). 
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The relation between these two vectors is the matrix with the earlier defined stress components. 

We only have to identify 6 stress components. 

 

1.1.1 Special stress situations 

 

Some special cases of stress situations will be presented here. These cases will be used in 

examples in the next paragraphs.  

 

Isotropic stress -  If only the normal stresses have a non zero value and are all equal 

to each other the stress situation is denoted as an isotropic or 

hydrostatic stress situation. 
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Plane stress situation -  If on one of the planes all stresses are equal to zero this stress 

situation is denoted as a plane stress situation. 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 : Plane stress situation 
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Plane stress in beams  A special case of a plane stress situation occurs in beams. The 

commonly used beam theory only describes normal stresses and 

 shear stresses within the vertical cross sections of the beam and 

 related to these shear stresses also a shear stress on horizontal cross 

 sections in the x-y-plane. The normal and shear stresses are 

 distributed over the depth of the beam. For a small specimen at 

 distance z from the neutral axis we can consider the stresses as  

uniform. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 : Plane stress situation in a beam 

 

 

Uniaxial stress situation - If only one of the normal stresses occur the stress situation is 

denoted as a uniaxial stress situation. 

 

 

 

 

1.1.2 Isotropic and Deviatoric stress components 

 

The matrix with the defined stresses in 3D can be split in a diagonal matrix with the same  

diagonal terms and a non diagonal matrix : 
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The diagonal matrix is called the isotropic stress contribution. The second part is called the 

deviatoric stress component. The magnitude of the isotropic stress is the average of the normal 

stresses: 
 

 ( )
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1  

 

This distinction is made since the isotropic stress contribution will only cause a change in 

volume and the deviatoric stress component is responsible for a distortion. We will make use of 

this distinction in the chapter on Failure and Yield Criteria. 
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1.2 Strains 

Stresses will cause deformations. The amount of deformation per unit of length is called a 

specific elongation or in short strain. An uniaxial example is given below. 

 

   

 

 

 

 

 

Figure 1.4 : Specific elongation 

 

The length of a rod l will increase with an elongation ∆l due to the force N. The specific 

elongation is denoted as ε and is called the strain: 
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For a three dimensional body the deformations will not only be the above mentioned elongation. 

Also a change of shape can be observed.  
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Figure 1.5 : Deformation modes 

 

The first upper three deformed bodies describe elongations in x, y and z-direction. The shape of 

the body is unchanged. The three deformed bodies below are shape deformations. Like stresses 

(normal stresses and shear stresses) we observe that also deformations can be distinguished in to 

normal strains and shearing strains. The central question is however how these strains can be 

obtained from the observed displacements.  
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To simplify the problem we start with the uniaxial example. We assume a cross section build of 

fibres parallel to the x-axis. The displacement in the x-direction is denoted with u. At the left side 

of the specimen we assume a displacement u and at the right side an increased displacement 

u+∆u. 

 

 

 

 

 

 

 

 

 

Figure 1.6 : Strain definition 

 

The definition of the strain as the ratio of the change in length of the fibre to its original length, 

results in:  
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In case the length of the specimen becomes very small this yields to the general relation between 

the strain and the displacement field u(x) : 
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This result shows that the strain of a fibre is the derivative of the displacement function u(x) in 

the direction of the fibre. 
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The same procedure can now be applied to a 2-dimensional problem. In figure 1.6 a specimen 

PRSQ is shown with dimensions ∆x , ∆y. The displacement field u consists of component ux in x-

direction and uy in y-direction. Due to a deformation, point P will move to P’ and Q will move to 

Q’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.6 : Two-dimensional problem 

 

For this block PRSQ the displacement field can be defined as: 
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We assume a continuous displacement field which also has continuous derivatives : 
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These relative displacements can be written in matrix notation as: 
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With these relative displacements we will try to describe the strains of the fibres in x- and y-

direction. 
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In the following figure the deformed specimen is partly shown. The fibres PR parallel to the x-

axis and PS parallel to the y-axis are shown here. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 : Strains in x- and y-direction 

 

From the graph it follows that the length of fibre P’R’ has become : 
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With use of the classical definition of the strain, the new length of a fibre in x-direction can also 

be expressed as: 
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In which εxx is the strain in the x-direction of a fibre in x-direction. An expression for the strain 

in terms of the displacement field, can be found if we combine these two expressions: 
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This expression can be simplified by developing it into a Taylor series in both ux and uy : 
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If the displacement gradients are small, higher order terms can be neglected and we can obtain 

the so called linearised expression for the strain: 
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For the strain in y-direction of a fibre in y-direction (e.g. P’S’) the same approach holds: 
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This result so far is very similar to the earlier obtained expression of the strain. Since the 

displacement field is a function of x and y we have to use the partial derivative instead of the 

ordinary derivative. 

 

With this result the earlier found expression for the relative displacements can be rewritten. 
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From figure 1.7 we can also observe that not only an elongation of fibres occur but also a change 

of the right angle between fibres. This will cause a shape deformation. We will take a closer look 

to this component of the deformation. Most likely we will find in this way an expression for the 

non- diagonal terms of the rewritten expression above. 
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In order to do so we redraw figure 1.7 and look at the rotations of the fibres in x- and y-direction. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 : Rotation of fibres in x- and y-direction 

 

From figure 1.8 we can see that the shape of the specimen will be deformed due to the rotations 

ψ1 and ψ2. The total change of the right angle between the x- and y-fibres is defined as the shear 

deformation and denoted with γ: 
 

 21 ψψγ +=      (definition) 
 

From the graph it follows that the rotations can be found with: 
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For small displacement gradients the expressions can be simplified to: 
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These expressions are exactly the non-diagonal terms we were looking for. 
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The earlier found expression for the relative displacements can be rewritten as: 
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This matrix is not symmetric. The matrix can however be split into a symmetric part and a non-

symmetric but anti-symmetric part : 
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If we introduce a new rotational variable ω: 
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The non-diagonal term in the symmetric matrix will be defined as: 
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This is exactly half the change of the right angle between the x- and y-fibres. This will result in: 
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With this result we can also split the relative displacement in to two parts: 
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This is visualised in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 : Relative displacements due to deformation and rigid body rotation 

 

From figure 1.8 can be seen that the total change of the right angle between the x- and y-fibre is 

equal to: 
 

 21 ψψγ +=  

 

due to deformation due to rigid body 

rotation 
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From this definition it follows that: 
 

 γεεψψγ
2
1

21 2 =⇒=+= xyxy  

  

The non-diagonal terms of the strain tensor are thus equal to half the total shear deformation. 

 

To calculate stresses only the deformation component is important, since a rigid body 

displacement will not cause stresses. In most engineering textbooks therefore the expression 

containing the rigid body rotation is not presented. 

 

The general formulation for the presented strains in 2D becomes: 
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The shear deformation γ  is defined as: 
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For 3D situations a similar approach leads to strains which can be presented in a matrix notation 

as: 
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The strain components of this symmetric matrix can be derived from the displacement field with: 
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The relative displacements due to the rigid body rotations can be presented with the anti-

symmetric matrix of rigid body rotations: 
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The compact notation with the indices i,j will be explained in the next chapter about 

transformations and tensors. 
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1.2.1 Special strain situation, plane strain 

 

A special strain situation occurs when in one of the planes no strains can occur, e.g. 

0=== xzxyxx εεε . An example of such a condition is a cross section of small dimensions 

compared to the third dimension in the elongated direction of the body. The cross section is 

loaded in a way which does not vary with respect to the longitudinal axis (in this case the x-axis).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 : Plane strain situation 

 

We then may assume that in the cross section fibers in the x-direction will not deform and denote 

this situation as a plain strain situation. 

1.2.2 Volume strain 

 

If a cube is subjected to a volume change due to normal strains the change in volume can be 

described in terms of the normal strains as can be seen from figure 1.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 : volume change 

 

The change in volume related to the original volume can be expressed as the volume strain e: 
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2. Transformations and tensors 

With the definition of both stresses and strains we have found that both stresses and strains can 

be presented as symmetrical matrices: 
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Both the stress and strain matrices relate vectors. The stress matrix relates the normal vector n to 

the stress vector p. The strain matrix partly relates the location vector (positions) to the relative 

displacement vector u. The specified vectors are related to some kind of coordinate system. It is 

interesting to know how these vectors will change if we perform a transformation of the 

coordinate system. Due to the similarity between stresses and strains it is most likely that both 

the stress and strain matrices will transform by the same rules. 

 

2.1 Transformations 

In order to investigate the behaviour of transformations of vectors and matrices we will restrict 

ourselves to a simple 2D situation. As an example we can use a stiffness problem in  

which a displacement vector u and a force vector F 

are involved. The stiffness matrix K relates these 

two vectors: 
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With elementary calculus the stiffness matrix can be 

obtained: 
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Assignment: 

Proof the given stiffness relation    Figure 2.1 : Stiffness problem 
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Both the force and displacement vector have a physical meaning and a magnitude. This 

magnitude is irrespective of the coordinate system used and is therefore called an invariant. 

If the coordinate x-y system is changed, the values of the components of both the vectors F and u 

will change since the coordinate system is changed from x-y in to yx − . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 : Transformation  

 

From the graph it can be seen that the vector F has different components in the yx − -coordinate 

system : 
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This relation can be rewritten in matrix notation as: 
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For the displacement, which is also a vector, the same transformation rule holds: 
 

 uu .R=        (3) 
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With this result the transformation of a vector is clear. The backward transformation will be: 
 

 uu .R -1=  
 

For the transformation matrix R it holds that the inverse matrix is the same as the transposed 

matrix R
T 

(check this your self): 
 

 uu .R T=        (4) 
 

The main question now is how the stiffness matrix will transform due to a change of coordinate 

system. To find the transformation rule for the stiffness matrix we have to obtain the stiffness 

definition in the transformed coordinate system : 
 

uF .K=        (5) 
 

First step is to use (2) and (1) :  
 

uFF .K.R.R ==       (6) 
 

With use of (4) this expression can be rewritten as: 
 

 uuF TR.K.R.K.R ==      (7) 
 

In this expression both the loadvector and the displacement vector are defined in the transformed 

coordinate system. With (5) it can be seen that the transformed stiffness matrix yields : 
 

 TR.K.RK =       (8) 
 

This result can be worked out for the 2×2 example: 
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These transformation rules can be simplified with the double-angle goniometric relations: 
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Stress example 

A very similar result can also be obtained with a simple stress example. In the figure below a 

2D-stress situation is given in the x-y plane in which we are looking for expressions for the 

normal and shear stresses on the inclined face with area A with a local coordinate system which 

is rotated with respect to the x-y system by α.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2b : Transformation of stresses 
 

The resulting forces due to these stresses should satisfy the three equilibrium conditions for 

coplanar forces and moments on a  rigid body. Moment equilibrium requires xy yxσ σ= which 

reduces this system to two equilibrium conditions to be met:  
 

horizontal equilibrium: cos sin cos sinxx yxxx xy
A A A Aσ α σ α σ α σ α− = +  

vertical equilibrium:  sin cos cos sinxz yyxx xy
A A A Aσ α σ α σ α σ α+ = +  

 

These equations can be rewritten as: 
 

2 2cos sin 2 sin cosxx yy yxxx
σ σ α σ α σ α α= + +  

2 2sin cos 2 sin cosxx yy xyyy
σ σ α σ α σ α α= + −  

2 2( )sin cos (sin cos )yy xx yxxy
σ σ σ α α σ α α= − − −  

 

Using the double angle notation the transformation rules of the previous page are obtained.  
 

Summary 

The result is the transformation rule for a matrix which is based on the transformation rule of a 

vector.  
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2.2 Tensors 

In scientific publications the matrix notation is not used very often. The standard notation used is 

the tensor notation. The previous used vector notation can be written in a compact way with : 

 

 

zyxiu

u

u

u

u
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z

y

x

,,:with =
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The same principle can be adopted for a matrix : 
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The short notation is not the only advantage. We can distinguish different rankings of tensors. 

 

• A first order tensor is a vector which has: 

- a magnitude (length) 

- direction 

- transforms according to the earlier introduced transformation rule R 

 

The load and displacement vectors presented in the previous example are first order  

tensors.  

 

• A second order tensor is a tensor that relates two first order tensors. If the components of a 

first order tensor F can be derived from the components of an other first order tensor u by 

means of a linear relation F=K.u then K is a second order tensor. The transformation rule for 

a second order tensor is the earlier presented relation R.K.R
T
. 

 

If we can identify a linear relation as a second order tensor we know in advance that this  

relation transforms in the way a second order tensor transforms. From the earlier found  

definitions of the stress and strain it is now clear that these definitions are second order tensors. 

We can denote them as σij and εij.  
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2.3 Special mathematical properties of tensors 

A first order tensor can be seen as a vector with a magnitude. Its direction is related to the 

coordinate system used but the magnitude or length of the vector is not. This length is called an 

invariant, it is constant with respect to any coordinate system used. Mathematicaly this means for 

the used stiffness example: 
 

 
2222
yxyx FFFFF +=+=  

 

A second order tensor describes the relation between two first order tensors. Most likely these 

two vectors will not have the same direction. The question could be when will the direction of 

the two vectors coincide? This question can mathematically be presented as an eigenvalue 

problem: 
 

 uF λ=  
 

Combined with (1) this results in: 
 

uuF λ== .K  
 

The rigth hand side of this expression can be written as a matrix with the use of the unity 

matrix I: 
 

 ( ) 0.I-K.I..K =⇔= uuu λλ  
 

This latter equation is called the eigenvalue problem. Only for certain values of λ this system 

will have a non-trivial solution. The values of λ are the eigenvalues and the solutions of u the 

eigenvectors. If we apply this eigenvalue problem to the 2D stiffness example we will find: 
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This homogeneous system of equations will only have a non zero soltution if the determinant of 

the matrix is zero: 

 

 ( ) 0)(Det =−−−= yxxyyyxx kkkk λλ  

 

Since the non diagonal terms are equal (symmetrical matrix) we find the following characteristic 

polynomial which has to be zero. 
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( ) ( ) 0

0)(

22
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The solution of this equation yields: 
 

 ( ) ( )
2

21 1
1 2 2 2
, xx yy xx yy xyk k k k kλ λ  = + ± − +      (9) 

 

For each solution of this eigenvalue iλ an eigenvector i
u  can be found. The eigen vectors are all 

independent of each other which means that they make straight angles with each other. The 

eigenvalues will always be the same irrespective of the choice of the coordinate system.  
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This means that the characteristic polynomial will always be the same regardless of the choice of 

the coordinate system. In order to obtain in every coordinate system the same characteristic 

polynomial, the constants of this polynomial are invariant and denoted with Ii: 
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2 0

xyyyxx

yyxx

kkkI

kkI

II

−=

+=

=+− λλ

 

 

The eigenvectors belonging to the eigen values form a base for the transformed matrix: 
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From a mathematical point of view this means that if the x-y-coordinate system is transformed 

into the coordinate system based on the eigenvectors i
u , the matrix K  will transform into the 

presented matrix K . If one of the eigenvectors belonging to the first eigen value 1λ  is  

denoted as : 
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Suppose only a displacement in the 1

x
u direction is imposed. The load will become: 
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This result shows indeed a force which has the same direction as the imposed displacement. 
 

If we translate this mathematical elaboration to the 2D stiffness example we have to try to find 

the direction of the force F such that this direction coincides with the observed displacment  u.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.3 : Load vector and displacement vector coincide ? 
 

From an engineering point of view this leaves us with two solutions : 
 

- either we pull or push in the stiffest direction of the structure or 

- we pull or push into the weakest direction of the structure 
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What is the stiffest direction and what will be the weakest direction ? In order to find out we can 

look at the components of the transformed stiffnessmatrix due to a change of coordinate system 

by the specified angle α. The components of the stiffness matrix will be (see also page 17): 

 

αα

αα

αα

αα

αα

αα

αα

2cos2sin)(

2sin2cos)()(

2sin2cos)()(

cossin

sincos

cossin

sincos
K

RKR

2
1

2
1

2
1

2
1

2
1

T

xyyyxxyx

xyyyxxyyxxyy

xyyyxxyyxxxx

yyyx

xyxx

yyyx

xyxx

kkkk

kkkkkk

kkkkkk

kk

kk

kk

kk

+−−=

−−−+=

+−++=








 −

















−
=












=

 

 

The diagonal terms will be extreme (maximum or minimum) if its derivative with respect to the 

angle α will be zero. If we elaborate this we will find: 
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This results in the following expression for the optimum angle αo: 
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2
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With this result the extreme or principal values of the diagonal terms become: 
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This result is exactly the same as the earlier found expression (9). For the optimal direction of 

the angle α o , the non-diagonal terms will become zero! This will result in the transformed 

matrix: 
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If the coordinate system is rotated by α o and the load F is applied along one of the axis of this 

coordinate system, we find: 
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Which results in a displacement which has indeed the same direction as the load. 

 

Finding the extreme or principal values of the stiffness matrix by rotating the coordinate system 

is apparently the same as solving the eigenvalue problem. For any second order tensor we now 

have found the tool to obtain its extreme values by solving the eigenvalue problem. 

 

If these results are applied to the 2D stiffness example, we can find the stiffest and weakest 

direction and its values for the given frame with the known stiffness relation: 
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We will find for the value of the angle α o: 
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    Figure 2.4 : Stiffest and weakest directions 

2.3.1 Generalisation to 3D 

The above presented theory can be extended to 3D. The eigenvalue problem is exactly the same 

however the order of the characteristic polynomial will increase. For a 3D stress tensor this will 

yield: 
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The characteristic polynomial becomes: 

 

This second order stress tensor in 3D has three invariants. Regardless of the choice of base or 

coordinate system these invariants will be constant. For the special case that we choose the 

principal directions as a base the invariants can also be presented in terms of the principal 

stresses: 
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2.4 Mohr’s graphical Circle Method 

The transformation rules we found provide a tool to calculate the components of a tensor due to a 

rotation α of the coordinate system : 
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The extreme values of the tensor can be obtained with: 
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These values occur for an optimum angle αo of : 
 

 ( )
yyxx

xy

kk

k

−
=

2
1o2tan α             (3) 

 

Mohr discovered from the above equations (2) and (3) a specific graphical presentation. If a 

coordinate system as shown below is defined, the values from equation (2) can be presented as 

points in this coordinate system. 

 

 

 

 

 
 

 
 

 

 
 

 

 

 

 

 

Figure 2.5 : Mohr’s Circle, definition of coordinate system 

 

This specific coordinate system needs some explanation. The diagonal terms kxx and kyy of the 

tensor kij are placed on the horizontal axis. The vertical abcis contains the non diagonal terms kxy 

and kyx.  Although the values for these non diagonal terms are equal a distinction is being made 

here. The tensor kij is presented with two points (kxx; kxy) and (kyy; kyx) in the presented 

coordinate system.  

 

Special attention is needed for the direction of a positive kyx and kxy. The rule here is that if the y-

axis is pointing downward the positive direction of kyx is also downward. This rule can be 

remembered with the indicated red y’s.  
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The circle through the tensor points is called Mohr’s circle. It has a centre point m and radius r 

which can be derived from the graph as: 
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Both the centre point and the radius can be related to the two invariants by: 
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The principal values k1 and k2 can also be presented as points of intersection of Mohr’s circle 

with the xx/yy-axis. 
 

From the graph is clear that equation (2) can be obtained with : 
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By default the first principal value is the most positive one. 
  

The graphical meaning of the principal values is clear now. But what about the principal 

directions (equivalent with the eigen vectors) ? In order to find the principal directions defined as 

the directions in which the given tensor becomes extreme, we need a special point on the circel 

defined as the Directional Centre DC. Some times this point is also referred to as the pole of the 

circle. 

 

 

 

 
 

 

 

 

 

 

 

  

 

 

Figure 2.6 : Mohr’s circle, definition of Directional Centre DC 

 

The position of the DC on the circle can be found by : 

• Drawing a line parallel to the x-axis through the tensor point (kxx; kxy) 

• Drawing a line parallel to the y-axis through the tensor point (kyy; kyx) 

• The intersection of the two lines and the circle is the Directional Centre DC 

 

With this DC the principal directions can be found with: 

• Draw a line through DC and k1, this is the first principal direction, denoted as (1) 

• Dra a line through DC and k2, this is the second principal direction, denoted as (2) 
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From elementary mathematics it is known that the inner angle DC – k1 – (kxx; kxy)  is equal to 

half the centre point angle m – k1 – (kxx; kxy ). From the graph it can be seen that this inner angle 

is equal to αo. The direction of (1) is either from the DC to the point k1 or from k1 to the DC. 

With the choosen direction the direction of (2) is fixed due to the definition of the coordinate 

system, thus (1) and (2) must have the same orientation as x and y. In the figure below both valid 

solutions are presented. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 2.7 : Valid principal directions 

 

The Directional Centre DC acts like a kind of hinge. If we rotate the current coordinate system 

over an angle α keeping its origin in the DC the tensor points will move along the circle to the 

new transformed points. In this way the transformation rules (1) of page 21 for the components 

of the tensor can be obtained in a graphical way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 : Tensor transformation with Mohr’s circle 

 

Mohr’s graphical method is best applicable to 2D tensors. Some special applications for 3D 

stress tensors exist and will be presented in the next chapter. 

 

Summary 

An alternative method for the tensor transformation rule is Mohr’s Circle Method. The principal 

values and the principal directions can be obtained directly from the circle. The method has its 

own dedicated coordinate definition. Essential is the correct location of the Directional Centre 

DC which acts like a hinge for the rotation of the coordinate system. 
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2.5 Example of Mohr’s Circle Method 

In this paragraph some examples will be shown. We start with the earlier defined stiffness 

problem. This problem has already been solved with the transformation formulas but here we 

will apply Mohr’s graphical method. The second example will be a given stress situation from 

which we will try to find the maximum stresses (principal stresses) and the according principal 

directions. 

 

2.5.1 Stiffness example 

The stiffness matrix for the stiffness problem in the specified x-y-coordinate system can be 

described with: 
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The stiffness tensor can be represented in a 

in a graphical way by two points in the 

special Mohr-coordinate system. Both 

points will be on Mohr’s Circle. 

 

 

 

 

 

 Figure 2.9 : Stiffness problem 

 

If we want to draw this circle we will have to follow the next steps : 

      

1) Draw the combined xx- and yy-axis. 

2) Put the x-y coordinate definition at the origin. 

3) Draw the vertical axis and denote the yx-axis in the same direction as the y-axis. 

4) Draw the veritcal xy-axis in the opposite direction. 

 

These first four steps are visualised in the next graph: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 : Definition of Mohr’s graph 
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With this setup we can continue with: 

 

5) Put the tensor components (kxx; kxy ) and (kyy; kyx ) as points in the graph. 

6) Draw a line through these two points. 

7) Draw through the half way point a perpendicular line. 

8) The point of intersection of this latter line with the x-axis is the centre m of the circle. 

9) Draw a circle with centre point m and through both points (kxx; kxy ) and (kyy; kyx ). 

 

These steps have been realised in the next graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.11 : Mohr’s Circle for the stiffness tensor and principal values 

 

In this graph the stiffness tensor kij has been presented as two points on Mohr’s Circle. The 

graphical method for transformations is based on the fact that any transformation of the stiffness 

tensor will produce points which are on the circle. In the extreme situation where all non 

diagonal terms become zero (eigen value problem) the principal values k1 and k2 are found.  
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In order to find the principal directions which belong to these principal values we need the 

position of the Directional Centre DC on the circle. From the earlier given definition of the DC 

we have to follow the next 3 steps : 

 

10) Draw a line parallel to the x-axis through the point (kxx; kxy )
1
. 

11) Draw a line parallel to the y-axis through the point (kyy; kyx ). 

12) The intersection of these two lines on the circle is the Directional Centre DC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.12 : Directional Centre DC and principal directions 

 

To find the principal directions we draw lines from the DC through k1 to obtain the first principal 

direction (1) and a line from the DC through k2 to obtain the second principal direction (2).  

 
Remark :  

The (1) – (2) directions have the same orientation as the x-y-coordinate system. 

From the graph it can be seen that the x-y-coordinate system can be transformated into the 

principal coordinate system (1)-(2) by rotating the x-y-system by α. This angle becomes: 

 

 o5,22=α  

 

With the circle and the position of the DC any transformation of the coordinate system can be 

investigated.  
 

                                                 
1
 In step 10 and 11 the line through the tensor point should be drawn parallel to the associated axis as indicated with 

the first sub index. In this example the associated axis is the x-axis respectively the y-axis but in general this is not 

the case. Therefore we must always use the direction of the first index of the tensor components used. 
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As an example we will find the transformed stiffness tensor for a rotation of the x-y-coordinate 

system of 45
o
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2.13 : Tensor transformation due to rotation of 45 degrees 

 

The transformed coordinate system is denoted with yx −  . This coordinate system is in fact the 

rotated x-y-coordinate system around the hinge DC. The intersections of the rotated axis of the 

coordinate system with the circle are the tranformed tensor components: 
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The values of these transformed components are read from the horizontal and vertical axis. This 

yields for these two points : 
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One of the two points coincides with the Directional Centre DC which is a coincidence. 
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2.5.2 Stress example 

Mohr’s method can also be used to find the extreme or principal stresses of a homogeneous 

loaded specimen under a plane stress situation. The principal stress occurs on planes on which 

the shear stresses are zero. We found that in the previous paragraphs dealing with the tensor 

transformation rules.  In the figure below a loaded test specimen is shown from which the 

stresses are only known on two faces of the specimen. The material thickness t is constant. The 

specimen is loaded with a homogenous plane stress situation, which means that we assume the 

same stress situation for every point of the specimen and zero stresses on the z-plane of the 

specimen.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.14 : Stresses on a specimen 

 

Given : - on plane AB acts a compressive stress of 120 N/mm
2
  and a  

     shear stress of 30 N/mm
2
. On plane BC acts a compressive stress of  

                          80 N/mm
2
 and a shear stress of 50 N/mm

2
.  

 

From this specimen we would like to know all the stresses on the other faces. The stresses on the 

faces AB and BC can be presented as two points in Mohr’s circle. With two points a circle can 

be drawn and for any rotation of the coordinate system the transformed stresses can be presented 

as a point on this circle. In this way we can find the stresses acting on the faces AF, FE, ED and 

CD. In order to do so we will however need to know the Directional Centre DC, which acts like 

a hinge or pole for the rotating coordinate system.  

 

The two faces on which the stresses are known are not perpendicular to each other. Therefore we 

can not use one single coordinate system to describe the four known stresses. For each surface 

however we can introduce a local coordinate system as is shown below. 

 

 

 

 

 

 

 

 

 Figure 2.15 : Local coordinate system for AB and BC 
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From these definitions of the local coordinate systems we can denote the stresses on AB and BC 

as: 
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Since the normal stresses are negative (compression) we expect a circle mainly on the left side of 

the origin. The positive xy-axis is downward due to the choosen global coordinate system. Both 

shear stresses are negative and therefore the points in the graph are on the negative side of the 

vertical axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.16 : Mohr’s stress circle 

 

The centre point of the circle can be found with the previously described steps 6-8: 
 

6) Draw a line through the two known stress points . 

7) Draw a perpendicular line throught the half way point. 

8) The point of intersection of this latter line with the x-axis is the centre m of the circle. 
 

The circle through the two known stress points and with centre point m can now be drawn.  

The Directional Centre DC can be found with steps 10-12: 
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10) Draw a line parallel to the −x~ axis through the point ( )
yxxx ~~~~ ;σσ .   

11) Draw a line parallel to the −x axis through the point ( )
yxyx σσ ; . 

12) The intersection of these two lines on the circle is the Directional Centre DC. 
 

To find the principal directions (1) and (2) we can draw lines from the DC through the extreme 

values σ1 and σ2 on the horizontal axis. This is also shown in figure 2.16. The orientation of the 

(1)-(2) coordinate system is the same as the global coordinate system. The result is: 
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In order to find the stresses on the other four sides we start with defining local coordinate 

systems on these sides and draw a line parallel to the local x-axis through the DC. The point of 

intersection with the circle will be the stress point. Normally there are two points of intersection. 

The point opposite the DC will be the stress point. If the DC is the only point of intersection, this 

will be the required point. The values can be read on the horizontal and vertical axis. The 

definitions of the local axis are shown in figure 2.17. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 Figuur 2.17 : Local coordinate systems 

 

With these definitions of the local global axis figure 2.18 can be obtained. 
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Figuur 2.18 : Stresses on all faces 

 

The stresses found, as they act, on all faces 

are shown in figure 2.19. 

 
Assignment : 

Check the equilibrium of this 

specimen. 

 

A similar example is programmed as an 

animation. Download from the website the 

program cirkelvanmohr.exe. All 

steps are visualized and explained with the earlier mentioned steps. 
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2.5.3 Strain example 

 

Mohr’s method can also be used to find the extreme or principal strains for a plane strain 

situation. From the specimen shown below the displacement field is known and given as: 
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Figure 2.19 : Strain example 

 

For any fibre the strain can be found with Mohr’s circle. In this example we will compute the 

strain in the fibre parallel to AC. 

In order to do so we have to construct Mohr’s circle. From the displacement field the 

strain tensor can be derived with the earlier found formula : 
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This tensor can be represented by two points in Mohr’s graph which should by on a circle. Both 

points can be denoted as: 
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Important to note: 

The directions in the strain circle are always the directions of the fibres. For the stresses we use as 

direction the normal to the plane on which the stresses act. Strains in the direction of the fibres 

are read from the horizontal axis, the vertical axis shows half the shear deformation.  

In figure 2.20 the diagram is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 : Mohr’s strain circle 

 

From the diagram the principal values and the principal directions can be obtained : 
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Fibres parallel to AC have directions which coincide with the principal direction (1). The strain 

in this direction of these fibres is therefore the principal strain ε1. 

 
Assignment: 

Check with the given displacements in A and C the strain in fibre AC as found with Mohr’s circle. 

The answer is given in the APPENDIX. 

The straining of any fibre can be found in this way by drawing a line through DC parallel to the 

direction of the fibre. The point of intersection with the circle is the representation of the 

transformed strain tensor components. On the horizontal axis the strain can be read. 
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Apart from straining we can also look at the shear deformation. If we want to know the change 

of right angle ADC we can for example take the fibre AD. In figure 2.21 the direction of fibre 

AD is shown in Mohr’s circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 : Fibre AD 

 

For fibres parallel to AD a local −− yx coordinate system has been introduced in which the 

local −x axis coincides with the direction of the fibre. From the circle can be read: 
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The change of the right angel ADC is the shear deformation which is defined as: 
 

 
4105,22 −×−== yxyx εγ  

 

The minus sign is here not very relevant since the amount of change was asked. From the 

definition of figure 2.22 (left) however we can see that the angle ADC will become larger due to 

the negative shear deformation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 : Shear deformation 
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3. Assignments 

With the presented theory the following questions can be answered. 

 

Problem 1 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.1 : Stress situation, problem 1 

 

a) Draw Mohr’s stress circle for the stress situation given in figure 3.1. 

b) Find the stresses for a plane with an angle of 45o with the x-axis. 

c) Check the equilibrium for a specimen PQRS. 

  

 

 

Problem 2 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.2 : Stress situation, problem 2 

 

a) Draw Mohr’s stress circle for the stress situation given in figure 3.2. 

b) Find the principal stresses and principal direction 

c) Find the stresses on plane PS 

d) Find the stresses on the planes of DSR. 

e) Check the equilibrium for a specimen DSR. 
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Problem 3 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3 : Stress situation, problem 3 

 

a) Draw Mohr’s stress circle for the stress situation given in figure 3.3. 

b) Find the principal stresses and principal direction 

c) Find the stresses on the planes PA and CR. 

d) Check the equilibrium for a specimen APCR. 

 

 

Problem 4 

 

 

 

 

 

 

 

 

 

 Figure 3.4 : Specimen and coordinate system of problem 4 

 

For the presented specimen of figure 3.4 and the defined coordinate system the following 

stresses are given: 0;MPa2;MPa8 =−== xyyyxx σσσ  

 

a) Draw Mohr’s stress circle for the given stress situation. 

b) Find the planes with the maximum shear stress. 

c) Find the planes with zero normal stresses, show the shear stress on these planes 
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Problem 5 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.5 : Strain problem 

 

In figure 3.5 a specimen is presented from which the strains are known : 

 
310;0;0 −−==== yyyxxyxx εεεε  

 

a) Draw Mohr’s strain circle for the given strains. Use a scale of 1 cm = 0,1×10
-3

. 

b) Show the position of the DC. 

c) Find the principal strains and the principal directions. 

d) Determine the change in length of fibres AC, BD and AD. 
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ANSWERS 

 

For all planes a local x-y-coordinate system is used in which the local x-axis coincides with the 

outward normal to the plane. 

 

Problem 1: stresses on PS : 
2

2
12

2
1 N/mm;N/mm −== xyxx σσ  

 

Problem 2:  stresses on PS  : 
22 N/mm1;N/mm0 −== xyxx σσ  

  stresses on RS  : 
22 N/mm1;N/mm0 == xyxx σσ  

  stresses on DS : 
2

5
42

5
3 N/mm;N/mm −=−= xyxx σσ  

  stresses on DR : 
2

5
42

5
3 N/mm;N/mm −== xyxx σσ  

 

Problem 3 : principal direction parallel to AC and BD;  

principal stresses  : 0;2 21 == σσ a ; 

stresses on CR  : 
2

5
32

5
1 N/mm;N/mm aa xyxx == σσ  

maximum shear stress on planes parallel to x- and y-axes. 

 

Problem 4 : plane with angle of 45 deg.  : 
22 N/mm5;N/mm3 −== xyxx σσ  

  planes x-2y = C   : 
2

~~
2

~~ N/mm4;N/mm0 == yxxx σσ  

planes x+2y = C   : 
2

~~
2

~~ N/mm4;N/mm0 −== yxxx σσ  

 

Problem 5 : ;mm54,2;mm52,1;mm23 −=∆−=∆−=∆ ADBDAC lll  
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4. Stress – strain relation for linear elasticity 

The relation between stresses and strains or the so-called constitutive model, is different for 

specific materials. These models are therefore also called material-models. These models can be 

quite complicated since materials may behave very brittle or on the opposite very ductile. Also 

the composition of materials increases the complexity of these models. In the field of Civil 

Engineering we have quite a number of complex materials like concrete, soils and asphalt. The 

material models are used in modern computer applications to predict the deformations and check 

the safety and durability of proposed solutions with the chosen materials. In this field a lot of 

ongoing research is aimed to improve these predictions in order to minimize the use of rural 

resources. 

 

The start of each material model however is the simplest case of a linear relation between the 

stresses and the strains. In this chapter we will derive this relation and investigate the number of 

material parameters needed to describe this relation in a unique way. In general the aim is to find 

the relation between the stress tensor and the strain tensor as indicated in figure 4.1 
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Figure 4.1: Stress strain relation 

 

The complete relation between the 9 strains and 9 stresses consists of 9×9=81 components. 

However due to symmetry of both the stress and the strain tensor we only need to find 36 

components of the stress strain relation. In matrix notation this looks like: 
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The stress strain relation relates two second order tensors and is therefore a fourth order tensor. 

This fourth order tensor must
2
 be a symmetric tensor which reduces the number of unknown 

components to 21. In this chapter we will show that for isotropic materials (same properties in all 

directions) only two material properties are needed to obtain the 21 components. 

                                                 
2
 Maxwell-Betti theorem on the reciprocal equality 

• second order strain tensor 

• derived from the displacement field  

• material independed 

 

• second order stress tensor 

• derived from equilibrium 

• material independ 
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4.1 Uniaxial test 

From a well known pulling test the relation between the uniaxial stress and strain is known. For a 

linear elastic material this relation is also known as Hooke’s law. Hooke assumed the following 

linear relation between stress and strain: 
 

 2N/mmεσ ×= E  
 

The constant E is denoted as the modulus of elasticity or Youngs’s modulus. Since strains have 

no dimensions the dimension of the modulus of elasticity is the same as the dimension of the 

stress. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 : Uniaxial test  

 

From tests we find a linear relation between the change of length and the applied force, see 

figure 4.2. The slope of the relation is denoted as the stiffness k. Apparently the result yields: 
 

 lkF ∆×=  
 

This test result can be related to stresses and strains with: 
 

 
l

∆l
AF =×= εσ and  

 

We then find the well known expression: 
 

 l
l

EA
F ∆×=  

 

Apart from a change in length also a change in diameter of the specimen can be observed with 

this pulling test.  
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This so called necking of the cross section is a deformation, occurring out of the plane of action 

(pulling direction). The amount of necking is related to the observed strain: 
 

 ν==
∆

∆

constant

l

l
d

d

 

 

This constant ν is known as Poisson’s ratio. The cross section remains a circle. The necking in 

both y- and z- direction is therefore the same and in this experiment only dependent on the 

amount of straining in the x-direction. 
 

With the results of this basic experiment we will continue to find the relation between the 

stresses and the strains. In figure 4.3 the normal stresses and the corresponding deformations are 

shown as well as the shear stresses and the corresponding shear deformations. 
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Figure 4.3 : Stresses and strains. 
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From these graphs can be seen that the deformations due to normal stresses are uncoupled from 

the shear deformations. We therefore will first try to find the relation between the normal 

stresses and the strains followed by the relation between the shear stresses and the shear 

deformation. 

4.2 Normal stresses versus strains 

From the experiment with only one uniaxial stress xxσ we found: 
 

 Strain in the pulling direction:  
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 Strain in the plane perpendicular to the axis of the bar: 
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In general all normal stresses can have a value which results in : 

 

This can be presented in matrix notation as: 

 

The inverse relation yields: 
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From this latter relation we can conclude that the stress strain relation is limited to Poisson’s 

ratio’s of -1 < ν < 0.5. Metals have a Poisson ratio in the range of 0.3 while concrete has a 

slightly lower Poisson ratio around 0.2. Think of the meaning of a negative value for the Poisson 

ratio! 

 

EEE

EEE

EEE

zzyyxx

zz

zzyyxx
yy

zzyyxx
xx

σνσνσ
ε

νσσνσ
ε

νσνσσ
ε

+−−=

−+−=

−−=

































−−

−−

−−

=

















zz

yy

xx

zz

yy

xx

.

1

1

1
1

σ

σ

σ

νν

νν

νν

ε

ε

ε

E



 
CIE4145 Dynamics and Introduction to Continuum Mechanics 

 
 Ir C. Hartsuijker & Ir J.W. Welleman November 2009  46

4.3 Shear stress versus shear deformation 

The constitutive relation between the shear stress and shear deformation can be expressed as: 
 

 xyxy G γσ ×=  

 

In which G is the shear modulus and can be regarded as a material property with the dimension 

of a stress. In figure 4.4 the shear stress and the deformation is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 : Shear stress and shear deformation in 2D 

 

With the definition of the shear deformation γ  the relation becomes: 
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The inverse relation thus becomes: 
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If the “material property” G is known the relation has been established. In case of a linear elastic 

material the shear modulus G is not an independent property but is related to the Young’s 

modulus and the Poisson’s ratio: 
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=
12
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The proof of this relation can be found in APPENDIX 2. 
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4.4 Complete stress strain relation in 3D 

The complete relation between the stresses and the strains thus becomes: 

 

 

The inverse relation can be written as: 

 

4.5 Stress strain relation for plane stress situations 

In case of a plane stress situation the general relation can be reduced to: 
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In matrix notation these relations become: 
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The principal directions can be found either from the stress tensor or from the strain tensor.  
 

• From the stress tensor we can find the principal stress directions with: 
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• From the strain tensor we can find the principal strain directions with: 
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With the relation between stresses and strains this latter result can be written in terms of stresses 

as: 
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Both expressions (i) and (ii) lead to the same result. The principal directions for the stresses and 

the strains for a linear elastic material are therefore the same. This property of linear elasticity 

can also be found in the stress and strain circle of Mohr. In both graphs the same principal 

directions will be found. This is only possible if in both circles the relative position of the DC on 

the circle is the same.  
 

Assignment: 

Check this yourself with a little sketch. 

4.6 Stress strain relation in principal directions 

The stress strain relations found are valid for any orientation of the coordinate system. A special 

case of this orientation is the principal coordinate system in which the x-axis coincides with the 

principal axis (1) and the y-axis coincides with the principal axis (2). For a plane stress situation 

this results in the stress tensor: 
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All shear stresses are zero (definition of principal direction) thus the previous equations can be 

simplified to: 
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5. Assignments 

5.1 Problem 1 

In figure 5.1 a homogeneous loaded specimen  

is given. On two planes the stresses are known. 

 

 

Additional parameters : 

 E = 2 GPa; ν = 0,5 

 

 

 
 

 

 

 

Figure 5.1 : Problem 1 

 

Questions: 

a) Draw the stress circle and find the stresses on the x-plane. 

b) Draw the strain circle and compute the change of length of AB and the change of the 

right angle DAB. 

 

5.2 Problem 2 

The specimen of figure 5.2 is loaded in a 

homogeneous plane stress situation due to 

stresses on the faces of the specimen. From 

these stresses only the two shear stresses on AB 

and AC are known. 

 

Additional information is available however; 

the strain of fibres parallel to CD is –1,5×10
-3

. 

 

 

Additional parameters : 

E = 5 GPa; ν = 0,25 

 
 

Figure 5.2 : Problem 2 

Questions: 

a) Find the stresses on x- and y-planes. 

b) Draw the stress circle and check the given shear stresses on AB and AC 

c) Draw the strain circle and check the given strain for fibres parallel to CD. 

 

 
Hint :  

Use the stress – strain relation and the fact that ADC is a straight angle. 
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5.3 Problem 3 

A specimen is loaded with a homogeneous plane stress situation. The fibre strains in specific 

directions can be obtained with four mounted strain gauges G0, G45, G90 and G135 which are 

mounted on the specimen. The strain gauges are placed with intervals of 45 degrees between the 

orientation of the gauges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3 : Specimen with mounted strain gauges 

 

During testing the reading of gauge G45 was not possible since this gauge caused a short circuit. 

So we only have data from three strain gauges: 

 

 

4
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0 4.0 10

45 ??

90 6.0 10
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G
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From the material analysis is known: 

 

 

2

2

37500 N/mm

0.25

35 N/mm
y

E

f

ν

=

=

=

 

 

Question: 

 

a) Find the stress tensor for this stress situation in the given coordinate system and 

determine the principal stresses. 

b) Show with Mohr circle for stresses and strains that the results are consistent with the 

theory. 

c) Find the shear deformation of this specimen.  

 

Additional question after reading chapter 6: 

 

d) Find the safety factor for this stress situation using the von Mises criterion. 
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ANSWERS 
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6. Failure 

With the definition of the strains, stresses and the stress-strain relation we created a model for a 

linear elastic material. Any strain situation can be translated with the stress-strain relation into a 

stress situation. This chapter will deal with the question when failure will occur. If a certain 

stress situation exceeds a limit we speak of failure of the material, a structure or a model. The 

limit state itself is in fact a model too. Depending on the behaviour of the material different 

models exists. Most models are based on plasticity but different models like visco-plasticity 

models also exists. In this chapter we will not describe all these models. Only two models will be 

described.  
 

Important for any model is the description of the stress state which has to be tested to any limit 

or failure criteria. From the previous chapters we have seen that any stress tensor can be 

described in a unique way with the stress invariants, into the principal stresses. Therefore most 

models will be models based on principal stresses. So a good definition of a failure model could 

be : 
 

Any combination of principal stresses that exceeds a certain limit function or value will 

initiate failure. 
 

If in any point the yield criterion is reached the material will in most cases not be able to sustain 

further loading in this point. However the structure as a whole does not necessarily have to fail. 

Due to redundancy in the structure failure may only occur at a later stage when gradually more 

points have reached the yield or failure criteria. It is therefore important to distinct failure at 

material level and failure at a structural level. In this chapter only failure at material level will be 

considered. 

6.1 Principal stress space 

Any 3D stress state in a x-y-z-coordinate system :  
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can be presented in terms of the principal stress tensor in the 1-2-3-coordinate system with: 
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The standard formulae of section 2.3.1 can be used to obtain the principal values of the stresses. 

This principal stress tensor can also be split in to an isotropic and a deviatoric part (see section 

1.1.2) with:  
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The isotropic stress is related to the first stress invariant I1 as was shown in section 2.3.1.  

The deviatoric component in the 1-2-3-space can also be denoted as: 
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The stress decomposition into an isotropic and deviatoric part can be presented in the 1-2-3-

space as shown in figure 6.1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.1 : Isotropic and deviatoric stress components in the principal stress space 

 

The three principal stress components can be presented as a vector summation of the isotropic 

part and the deviatoric part of the stress. The deviatoric stress component is orthogonal to the 

isotropic stress component. The proof is the inproduct or so called dot product of both vectors: 
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The angle between these two vectors is therefore a straight angle. The length of the presented 

vectors can be found with: 
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This result will be used in the next section. 
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6.2 Von Mises failure model 

Von Mises postulated that failure occurs when the deviatoric stress exceeds a limit value. This 

assumption was based on the observation that many materials are not sensitive to changes in the 

isotropic part of the stress but very sensitive to any change in the deviatoric part of the stress. 

Steel e.g. will hardly fail under an isotropic stress situation. Imagine a bullet deep under water, it 

will not fail, even not at considerable depths. For normal engineering practice von Mises stated 

that a failure model for steel should be independent of the isotropic stress. Failure will thus be 

the result of shape deformation due to the deviatoric stress component only. A graphical 

representation of this idea is shown in figure 6.2. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.2 : Failure when the deviatoric stress component exceeds a limit value 

 

For different values of the isotropic stress a 

deviatoric plane can be drawn which is 

orthogonal to the space diagonal of the 

principal stress space, 1-2-3-space. The 

deviatoric component of the principal stress 

lies within this plane.  

 

The limitation of the deviatoric stress 

component results in the deviatoric or π-plane 

in a circle. If the length of the deviatoric stress 

component is smaller than the radius of the 

limit circle failure will not occur. In figure 6.3 

this failure criterion is presented and yields : 

 

maxss ≤  

       Figure 6.3 : Von Mises criterion 

 

This failure criterion is known as von Mises yield or failure criterion. 
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The length of the deviatoric component was found in section 6.1 as: 
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This length is, according to von Mises, limited: 
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With the definition of the isotropic stress this criterion can be elaborated to: 
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This last expression is the von Mises formula in terms of principal stresses: 
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The constant smax has to be determined with experiments. 
 

6.2.1 Von Mises yield criterion based on a uniaxial test 

To find the parameter smax in the von Mises formula a simple uniaxial test can be performed.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 : Uniaxial test 

 

The applied force causes a normal stress σ at a cross section. The stress will increase due to an 

increasing load up to the elastic stress limit, the yield stress fy. All stresses on the outside are zero 

which results in a uniaxial limit stress situation which can be described in terms of principal 

stresses as: 
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With this “test result” the parameter smax in the von Mises criterion can be found as: 

 

 

( ) ( ) ( )[ ]
( ) ( )[ ]

2

3
22

max

2

max

22

3
1

2

max

2

13

2

32

2

213
1

y

yy

fs

sff

s

=

⇔=+

≤−+−+− σσσσσσ

 

 

The von Mises criterion thus becomes: 
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In most literature this result is presented as: 
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The criterion found can be presented in the 1-2-3-space as a tube with the space diagonal as it 

centre-line as can be seen from figure 6.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 : Von Mises criterion in the principal  stress space 

 

From this graph can be observed that as long as any principal stress combination is within the 

tube, failure will not occur. Also can be seen that the value of the isotropic stress is of no interest 

with respect to failure. The tube remains the same for large isotropic stresses in both the positive 

and negative domain. 

 

This model is for engineering practice applicable for a variety of ductile materials like alloys 

such as steel and aluminum.  

 

An alternative way of finding the von Mises criterion can be found in the APPENDIX 3. This 

method shows that the deformation energy which is responsible for a change in shape of a 

material will lead to the von Mises criterion.  
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6.2.2 Von Mises criterion for plane stress situations 

The von Mises criterion can also be used in plane stress situations. From figure 6.5 can be seen 

that the plane of intersection with one of the 1-2 , 2-3 or 3-1 planes results in an ellipse as is 

shown in figure 6.6 for the intersection with the 1-2-plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 6.6 : Von Mises criterion in plane stress situation 

 

6.2.3 Von Mises criterion for beams 

 

In section 1.1.1 the stress situation in beams was presented as a special case of a plane stress 

situation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 : Plane stress situation in beams 

 

At a certain distance z from the neutral axis the stresses on a small specimen can be regarded as a 

homogeneous plane stress situation. With the transformation formula the principal stresses due to 

a specific normal stress σ and shear stress τ can be found as: 
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This result can be used in combination with the von Mises criterion: 
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Which results in the von Mises yield criterion for beams in terms of the normal stress σ and 

shear stress τ : 

 

 yf≤+ 22 3τσ  

 

This formula is also known as the Huber-Hencky yield criterion. In fact this formula is a special 

presentation of the von Mises criterion for beams.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.8 : Huber-Hencky yield criterion 

 

 

6.3 Tresca’s failure model 

Tresca assumed failure if the maximum shear stress in the material exceeds a certain limit 

denoted with c. In case of a plane stress situation the maximum shear stress can be found with 

Mohr’s stress circle as can be seen from figure 6.9. With only one non zero principal stress this 

is an example of a uniaxial stress situation. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.9 : Mohr’s stress circle for a uniaxial stres situation 
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If the yield stress is denoted with fy , the maximum shear stress and thus Tresca’s limit value  c 

becomes: 
 

 yfc
2
1=  

 

Mohr’s circle in the presented 1-2-plane is therefore bounded by: 
 

 c221 ≤−σσ  

 

We can extent this to 3D from which will be found that any principal stress combination is 

bounded according to Tresca by: 
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Each of the circle 1-2, 2-3, and 1-3 is bounded by c. In figure 6.10 this is shown.  

 

 

 

 

 

 

 

 

 

 
   

 

 

 

 

Figure 6.10 : Tresca’s circles 

 

In the presented example all principal stresses are non zero. Tresca’s criterion states that the 

largest circle is decisive. In the 1-2-3 principal stress space Tresca can be seen as a six faced 

tube, a hexagon.  

 
 

 Figure 6.11 : Tresca’s hexagon in the 1-2-3 principal stress space 
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6.3.1 Tresca in plane stress situations 

 

From figure 6.11 it can be seen that like von Mises also Tresca’s criterion is independent of any 

isotropic stress. All combinations of the three principal stresses which are inside the hexagon 

will not cause yielding. In a plane stress situation Treca’s criterion can be presented as shown in 

figure 6.12. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

Figure 6.12 : Tresca’s criterion in the 1-2-principal stress plane 

 

The six bounding lines can be found from the general formulation on the previous page since the 

third principal stress is zero. 

 

6.3.2 Tresca in beams 

 

Like the von Mises criterion also the Tresca criterion can be used on beams. With the principal 
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and the Tresca criterion : 
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This formula limits the combination of normal stresses and shear stresses in beams and is shown 

in figure 6.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.13 : Tresca’s criterion for beams in terms of σ and τ. 

 

The maximum shear stress is limited to : 
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6.4 Von Mises versus Tresca 

The two presented models started with different assumptions. Von Mises based on deformation 

due to the deviatoric stress component and Tresca based on a maximum shear stress criterion. 

Von Mises model shows a continuous function which can be presented as a tube, Tresca’s model 

is a discontinuous model build out of six faces in the three dimensional principal stress space. If 

we compare the two models we find for the three dimensional principal stress space: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.14 : Von Mises versus Tresca 

 

Also for the presented plane stress situations we can compare the two models.
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Figure 6.14 : Von Mises versus Tresca (2) 

 

Tresca’s model fits precisely inside the von Mises criterion. This is not always the case as can be 

seen from APPENDIX 4. However the differences between both models are small and most 

alloys follow von Mises which is also the most suitable model to implement into computer code. 

6.4.1 Example 

The stress tensor for a stress situation is given as:  
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From the material used the yield stress is specified as : 2N/mm250=yf  

 

Question : Find the safety for the stress situation based on Tresca and von Mises.  

You may assume that all stress components are proportional to each other.  
 

Answer : Both models use principal stresses. For this stress tensor we find: 
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According to Tresca the principal stresses are bounded by : 
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With von Mises we find : 
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Remark: 

The von Mises criterion is a quadratic stress criterion:  
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If all principal stresses are proportional enlarged to: 
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The final check will become: 
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This result can also be presented with graph’s in the (1)-(3)- principal plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 : Interpretation of the results 

 

The found safety factors can be interpreted as the ratio of the stress vector from the origin to the 

marked intersection with the yield function and the blue stress vector (125, -50) in the (1)-(3)- 

principal plane. From this graph it becomes clear why the safety according to von Mises is larger 

than according to Tresca. 

 
Assignment: 

Answer the additional question posed in problem 5.3. 
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7. APPENDIX 

7.1 Strain formulation 

Find the Taylor series for the strain definition: 11
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Start with finding a Taylor series for the general expression: 
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The values of these derivatives at the origin (0,0) become: 
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The Taylor series approximation at a small distance x,y from the origin thus becomes: 
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The Taylor series approximation for the strain definition thus becomes: 
 

 

2

y

2
1x

xx 








∂

∂
+

∂

∂
=

x

u

x

u
ε  



 
CIE4145 Dynamics and Introduction to Continuum Mechanics 

 
 Ir C. Hartsuijker & Ir J.W. Welleman November 2009  65

7.2 Shear modulus G 

The shear modulus G for a linear elastic material is related to the elasticity modulus E and the 

Poisson’s ratio ν. 

 

To investigate this relation we consider a plane stress situation were only normal stresses acts on 

the x- and y-planes as indicated in figure 7.1-a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 : Plane stress with only normal stresses  

 

For planes under 45
o
 we can find with Mohr’s circle a pure shear situation as indicated in figure 

7.2-b. This circle is presented below in figure 7.2. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. : Mohr’s circle, pure shear situation 
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The strains in the original x-y-coordinate system can be found with the stress-strain relations: 

 

These strains can be presented with two points on the horizontal axis in Mohr’s strain circle (see 

figure 7.3). 

 

The shear deformation or shear strain of fibres with an angle of 45
o
 with the x-axis can be found 

with the constitutive relation for pure shear: 
 

 
GG

yx

yxyx

σσ
εγ === 2  thus: 

G
xyyx

2

σ
εε ==  

 

The strain of these fibres are zero since the normal stresses are zero, see figure 7.2: 
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These strains can be presented with two points on the vertical axis in Mohr’s strain circle (figure 

7.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 7.3 : Mohr’s strain circle 
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From this follows the relation between E, G and ν. 
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7.3 Von Mises criterion based on deformation energy  

The von Mises criterion can also be found in an alternative way. Von Mises stated that the 

amount of shape deformation energy for an alloy material is limited. He therefore claimed that 

not the volume change but the change of shape causes failure in a material. In this appendix the 

energy needed for the shape deformation will be investigated based on the earlier found stress 

strain relations. 

 

7.3.1 Stains and stresses due to shape deformation 

Any deformation can be split into two parts, a volume change and a change of shape. Most alloys 

can withstand a considerable change of volume before failure occurs. For normal engineering 

purposes we can therefore conclude that failure is independent of a change of volume. For a 2D 

situation an example of change in volume and change in shape is given in the graph below. 
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 Figure 7.4 : Change in volume and shape 

 

Change of volume is caused by the isotropic stress component or hydrostatic stress : 
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The change of shape or distorsion is caused by the deviatoric part of the stress tensor: 
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The strains of fibres in x-, y- or z-directions can also be written as a part due to the deviatoric 

stress and a part due to the isotropic stress. For a fibre in x-direction holds: 
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deviatoric strain 



 
CIE4145 Dynamics and Introduction to Continuum Mechanics 

 
 Ir C. Hartsuijker & Ir J.W. Welleman November 2009  68

The deviatoric strain tensor eij can thus be presented as: 
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7.3.2 Deformation energy 

The amount of deformation energy can be calculated based on the deviatoric stress and 

deviatoric strain. An expression for the deformation energy can be found based on the simple 

model given in figure 7.5. 

 

 

 

 

 

  

 

 

 

 

 Figure 7.5 : Deformation energy and Work 

 

Per unit of volume V the force F produces an amount of work W. During the deformation of the 

material this amount of work will be stored in the material as deformation energy: 
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The amount of deformation energy is therefore equal to the specified area in the stress-strain 

diagram. 

 

          

      

 

 

 

 

Figure  7.6 : Deformation energy 

 

With the expressions for the deviatoric stress and deviatoric strain the part of the deformation 

energy which causes distorsion (change of shape) can be found with: 
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According to von Mises this amount of energy is bounded and can be regarded as a material 

limit. This limit is of course independent of the coordinate system and must be invariant. We can 

therefore choose to express this part of the deformation energy in terms of the principal stresses. 

The von Mises limit function then becomes: 
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In order to find the limit value of this energy a simple uniaxial test can be used. If the material 

yields at a yield stress fy  the stored deformation energy which leads to distorsion can be found 

with : 
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This is the limit value for the distorsion energy. The von Mises criterion thus becomes: 
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This is exactly the same expression as found in paragraph 6.2.1. 
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7.4 Von Mises based on a shear test 

The von Mises criterion  
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was tuned in section 6.2.1 with a uniaxial test. It is also possible to find the von Mises parameter 

smax with a different test, e.g. a shear test as is seen in figure 7.7. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.7 : Pure shear 

 

From Mohr’s stress circle the principal stresses can be found. The von Mises criterion thus 

becomes: 
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If the maximum shear stress is assumed as: 
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The von Mises criterion then becomes: 
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 Figure 7.8 : Von Mises versus Tresca 
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7.5 Continuation of strain example from paragraph 2.5.3 

The strain in fibres AC in the strain example of paragraph 2.5.3. can also be found in an 

alternative way. 
 

The definition of the strain according to paragraph 1.2 is : 
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In other words, the strain is the relative displacement projected to the original x-direction of the 

fibre. In the example the displacement field is given and the displacements in A en C can be 

found as: 
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The strain in direction AC can be found by projecting all the displacements to the direction AC 

and calculate the relative displacement of C with respect to A in the direction AC. In the graph 

below this procedure is visualised. 

 

 

 

 

 
 

 

 

 

 
 

 

Figure 7.9 : Relative displacement of C in the direction AC 
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The relative displacement of C towards A in the original direction AC can be found as: 
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The strain of fibre AC thus becomes: 
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This result is in full agreement with the earlier found result in paragraph 2.5.3. 
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7.6 Example of an examination 

A fictive homogeneous isotropic specimen is shown in the figure below. The thickness of the 

specimen is t. The specimen is loaded in a homogeneous plane stress situation. The displacement 

field is denoted in the ( yx, )-coordinate system as: 

 

 
yxu

yxu

y

x

44

444

106104

10201018104

−−

−−−

×+×=

×−×+×=
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given specifications :      E = 62500 N/mm
2
, ν = 0,25 en  fy = 240 N/mm

2
.   

 

Remark : Make use of the examinations formulas leaf. 

 

Questions: 

a) Draw Mohr’s strain circle using a scale of  : 1 cm =̂ 2×10
-4

 . Clearly show the Directional 

Centre DC and the principal directions. Specify all relevant values in the drawing. 

b) Derive from the circle the strains of fibres parallel to AD and DC. 

c) Compute the principal stresses and draw Mohr’s stress circle. Use as scale: 1 cm =̂ 10 

N/mm
2
. Clearly show the position of the Directional Centre DC and the principal 

directions! 

d) Derive from the stress circle the stresses on the faces AB, BC, CD and DA. Show in a 

separate graph of the specimen all stresses with the directions in which these stresses acts 

and the magnitude of these stresses. 

e) The material follows the von Mises yield criterion: 

- Describe the starting point of the governing equation of this yield criterion. 

- Calculate the safety of the plane stress situation according to von Mises. 
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Answer 

 

a) With the given displacement field the strain tensor can be found with: 
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The tensor can be shown as two points in Mohr’s graph for strains. Subsequently Mohr’s  

strain circle can be drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Fibres parallel to AD and DC are fibres of the tensor in the x-y-coordinate system. From 

Mohr’s strain circle the components of this tensor can be obtained by drawing a line 

through the DC parallel to the direction of the fibre. From this follows: 
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c) From the principal strains we can compute the principal stresses: 
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d) Mohr’s stress circle is shown above. For each face of the specimen a local coordinate 

system is shown. By default the local x-axis is chosen as the out of plane normal to the 

face. This is not necessary but convenient to avoid errors. Pay attention to the position of 

the DC. It’s relative position in the stress circle is the same as in the strain circle. 
 

e) The principal stresses are : (0; 50; 150). The safety according to von Mises is: 
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The safety according to Tresca is : 60,175/120 =⇒= γγ  (maximum stress circle) 
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FORMULAS 
 

 
Principal values for a second order tensor: 
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Stress-strain relations: 
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Tresca: 
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Von Mises (based on tension or shear): 
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