2.3. DataFrame
#
In the example below, we start by creating a dictionary data that contains information about names, ages, and cities. We then use this dictionary to create a dataframe
df using pd.DataFrame( ).
data2 = {'Name': ['John', 'Alice', 'Bob'],
'Age': [25, 28, 22],
'City': ['London', 'Paris', 'Berlin']}
df = pd.DataFrame(data2)
print("Original DataFrame:")
df
Original DataFrame:
Name | Age | City | |
---|---|---|---|
0 | John | 25 | London |
1 | Alice | 28 | Paris |
2 | Bob | 22 | Berlin |
You can then use the loc[ ]
and loc[ ]
functions to locate specific data from your dataframe
. For example:
print("\nUsing iloc[]:")
print(df.iloc[0])
print(df.iloc[1:3])
print(df.iloc[0, 1])
print("\nUsing loc[]:")
print(df.loc[0])
print(df.loc[1:2])
print(df.loc[0, 'Age'])
Using iloc[]:
Name John
Age 25
City London
Name: 0, dtype: object
Name Age City
1 Alice 28 Paris
2 Bob 22 Berlin
25
Using loc[]:
Name John
Age 25
City London
Name: 0, dtype: object
Name Age City
1 Alice 28 Paris
2 Bob 22 Berlin
25
We then add and remove some data from the created dataframe
. You can remove rows and columns from a datafram by using the Yourdataframename.drop() function.
df.loc[0, 'City'] = 'New York'
df['Salary'] = [5000, 6000, 4500]
df = df.drop(1)
df = df.drop('Age', axis=1)
print("\nUpdated DataFrame:")
df
Updated DataFrame:
Name | City | Salary | |
---|---|---|---|
0 | John | New York | 5000 |
2 | Bob | Berlin | 4500 |