Example 1#
import sympy as sym
import numpy as np
import matplotlib.pyplot as plt
# algemene gegevens
x = sym.symbols('x')
EI, EA = sym.symbols('EI EA')
CV, CM, Cphi, Cuz, CN, Cux = sym.symbols('C_V C_M C_phi C_uz C_N C_ux')
dx = 10**-15
# gegevens constructie
a0, a1, a2, a3 = 0, 4, 9, 14
aa = np.array([a0, a1, a2, a3])
o0, o1, o2 = 0, sym.atan(3/4), sym.atan(-4/3)
oo = np.array([o0, o1, o2])
L = 14
# gegevens belastingen
Fh, qv, Fv = 15, 6, 16
Rv, Rh, Tr = sym.symbols('R_v R_h T_R')
B = np.array([Fh, qv, -qv, Fv, Rv, Rh, Tr])
b1, b2, b3, b4 = 0, 2, 6.5, 14
bb = np.array([b1, b1, b3, b2, b4, b4, b4])
# K = 1, Fv = 2, Fh = 3, qv = 4, qh = 5
nn = np.array([3, 4, 4, 2, 2, 3, 1])
#qz opstellen
qz = 0
#beginpunten
for i in range(len(B)):
for j in range(len(aa)):
if bb[i] == aa[-1]:
if nn[i] == 1:
qz += B[i] * sym.SingularityFunction(x,bb[i],-2)
if nn[i] == 2:
qz += B[i] * sym.SingularityFunction(x,bb[i],-1) * sym.cos(oo[-1])
if nn[i] == 3:
qz += B[i] * sym.SingularityFunction(x,bb[i],-1) * sym.sin(oo[-1])
if nn[i] == 4:
qz += B[i] * sym.SingularityFunction(x,bb[i],0) * sym.cos(oo[-1])
if nn[i] == 5:
qz += B[i] * sym.SingularityFunction(x,bb[i],0) * sym.sin(oo[-1])
break
else:
if bb[i] < aa[j]:
if nn[i] == 1:
qz += B[i] * sym.SingularityFunction(x,bb[i],-2)
if nn[i] == 2:
qz += B[i] * sym.SingularityFunction(x,bb[i],-1) * sym.cos(oo[j-1])
if nn[i] == 3:
qz += B[i] * sym.SingularityFunction(x,bb[i],-1) * sym.sin(oo[j-1])
if nn[i] == 4:
qz += B[i] * sym.SingularityFunction(x,bb[i],0) * sym.cos(oo[j-1])
if nn[i] == 5:
qz += B[i] * sym.SingularityFunction(x,bb[i],0) * sym.sin(oo[j-1])
break
# knikpunten
for i in range(len(B)):
for j in range(len(aa)-1):
if bb[i] < aa[j]:
if nn[i] == 2:
qz += B[i] * sym.SingularityFunction(x,aa[j],-1) * (sym.cos(oo[j]) - sym.cos(oo[j-1]))
if nn[i] == 3:
qz += B[i] * sym.SingularityFunction(x,aa[j],-1) * (sym.sin(oo[j]) - sym.sin(oo[j-1]))
if nn[i] == 4:
qz += B[i] * ((sym.SingularityFunction(x,aa[j],0) + sym.SingularityFunction(x,aa[j],-1) * (aa[j] - bb[i])) * (sym.cos(oo[j]) - sym.cos(oo[j-1])))
if nn[i] == 5:
qz += B[i] * ((sym.SingularityFunction(x,aa[j],0) + sym.SingularityFunction(x,aa[j],-1) * (aa[j] - bb[i])) * (sym.sin(oo[j]) - sym.sin(oo[j-1])))
display(sym.symbols('{q_z}='), qz)
\[\displaystyle {q_z}=\]
\[\displaystyle - 0.8 R_{h} {\left\langle x - 14.0 \right\rangle}^{-1} + 0.6 R_{v} {\left\langle x - 14.0 \right\rangle}^{-1} + T_{R} {\left\langle x - 14.0 \right\rangle}^{-2} + 6 {\left\langle x \right\rangle}^{0} + 16 {\left\langle x - 2.0 \right\rangle}^{-1} + 1.0 {\left\langle x - 4 \right\rangle}^{-1} - 1.2 {\left\langle x - 4 \right\rangle}^{0} - 4.8 {\left\langle x - 6.5 \right\rangle}^{0} - 32.0 {\left\langle x - 9 \right\rangle}^{-1}\]
#qx opstellen
qx = 0
#beginpunten
for i in range(len(B)):
for j in range(len(aa)):
if bb[i] == aa[-1]:
if nn[i] == 2:
qx += B[i] * sym.SingularityFunction(x,bb[i],-1) * -sym.sin(oo[-1])
if nn[i] == 3:
qx += B[i] * sym.SingularityFunction(x,bb[i],-1) * sym.cos(oo[-1])
if nn[i] == 4:
qx += B[i] * sym.SingularityFunction(x,bb[i],0) * -sym.sin(oo[-1])
if nn[i] == 5:
qx += B[i] * sym.SingularityFunction(x,bb[i],0) * sym.cos(oo[-1])
break
else:
if bb[i] < aa[j]:
if nn[i] == 2:
qx += B[i] * sym.SingularityFunction(x,bb[i],-1) * -sym.sin(oo[j-1])
if nn[i] == 3:
qx += B[i] * sym.SingularityFunction(x,bb[i],-1) * sym.cos(oo[j-1])
if nn[i] == 4:
qx += B[i] * sym.SingularityFunction(x,bb[i],0) * -sym.sin(oo[j-1])
if nn[i] == 5:
qx += B[i] * sym.SingularityFunction(x,bb[i],0) * sym.cos(oo[j-1])
break
# knikpunten
for i in range(len(B)):
for j in range(len(aa)-1):
if bb[i] < aa[j]:
if nn[i] == 2:
qx += B[i] * sym.SingularityFunction(x,aa[j],-1) * (-sym.sin(oo[j]) + sym.sin(oo[j-1]))
if nn[i] == 3:
qx += B[i] * sym.SingularityFunction(x,aa[j],-1) * (sym.cos(oo[j]) - sym.cos(oo[j-1]))
if nn[i] == 4:
qx += B[i] * ((sym.SingularityFunction(x,aa[j],0) + sym.SingularityFunction(x,aa[j],-1) * (aa[j] - bb[i])) * (-sym.sin(oo[j]) + sym.sin(oo[j-1])))
if nn[i] == 5:
qx += B[i] * ((sym.SingularityFunction(x,aa[j],0) + sym.SingularityFunction(x,aa[j],-1) * (aa[j] - bb[i])) * (sym.cos(oo[j]) - sym.cos(oo[j-1])))
display(sym.symbols('{q_x}='), qx)
\[\displaystyle {q_x}=\]
\[\displaystyle 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{-1} + 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{-1} + 15 {\left\langle x \right\rangle}^{-1} - 27.0 {\left\langle x - 4 \right\rangle}^{-1} - 3.6 {\left\langle x - 4 \right\rangle}^{0} + 3.6 {\left\langle x - 6.5 \right\rangle}^{0} + 74.0 {\left\langle x - 9 \right\rangle}^{-1}\]
V = -sym.integrate(qz.expand(), x) + CV
M = sym.integrate(V, x) + CM
kappa = M / EI
phi = sym.integrate(kappa, x) + Cphi
uz = -sym.integrate(phi, x) + Cuz
N = -sym.integrate(qx.expand(), x) + CN
epsilon = N / EA
ux = sym.integrate(epsilon, x) + Cux
uvz = uz.subs(x,0) * sym.cos(o0)
uvx = -ux.subs(x,0) * sym.sin(o0)
for i in range(len(oo)):
uvz += ((uz - uz.subs(x,aa[i])) * sym.SingularityFunction(x,aa[i],0) - (uz - uz.subs(x,aa[i+1])) * sym.SingularityFunction(x,aa[i+1],0)) * sym.cos(oo[i])
uvx += -((ux - ux.subs(x,aa[i])) * sym.SingularityFunction(x,aa[i],0) - (ux - ux.subs(x,aa[i+1])) * sym.SingularityFunction(x,aa[i+1],0)) * sym.sin(oo[i])
uv = uvz + uvx
uhz = uz.subs(x,0) * sym.sin(o0)
uhx = ux.subs(x,0) * sym.cos(o0)
for i in range(len(oo)):
uhz += ((uz - uz.subs(x,aa[i])) * sym.SingularityFunction(x,aa[i],0) - (uz - uz.subs(x,aa[i+1])) * sym.SingularityFunction(x,aa[i+1],0)) * sym.sin(oo[i])
uhx += ((ux - ux.subs(x,aa[i])) * sym.SingularityFunction(x,aa[i],0) - (ux - ux.subs(x,aa[i+1])) * sym.SingularityFunction(x,aa[i+1],0)) * sym.cos(oo[i])
uh = uhz + uhx
display(sym.symbols('{N}='), N)
display(sym.symbols('{V}='), V)
display(sym.symbols('{M}='), M)
display(sym.symbols('{u_x}='), ux)
display(sym.symbols('{\phi}='), phi)
display(sym.symbols('{u_z}='), uz)
display(sym.symbols('{u_v}='), uv)
display(sym.symbols('{u_h}='), uh)
\[\displaystyle {N}=\]
\[\displaystyle C_{N} - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{0} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{0} - 15 {\left\langle x \right\rangle}^{0} + 27.0 {\left\langle x - 4 \right\rangle}^{0} + 3.6 {\left\langle x - 4 \right\rangle}^{1} - 3.6 {\left\langle x - 6.5 \right\rangle}^{1} - 74.0 {\left\langle x - 9 \right\rangle}^{0}\]
\[\displaystyle {V}=\]
\[\displaystyle C_{V} + 0.8 R_{h} {\left\langle x - 14.0 \right\rangle}^{0} - 0.6 R_{v} {\left\langle x - 14.0 \right\rangle}^{0} - T_{R} {\left\langle x - 14.0 \right\rangle}^{-1} - 6 {\left\langle x \right\rangle}^{1} - 16 {\left\langle x - 2.0 \right\rangle}^{0} - 1.0 {\left\langle x - 4 \right\rangle}^{0} + 1.2 {\left\langle x - 4 \right\rangle}^{1} + 4.8 {\left\langle x - 6.5 \right\rangle}^{1} + 32.0 {\left\langle x - 9 \right\rangle}^{0}\]
\[\displaystyle {M}=\]
\[\displaystyle C_{M} + C_{V} x + 0.8 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.6 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - T_{R} {\left\langle x - 14.0 \right\rangle}^{0} - 3 {\left\langle x \right\rangle}^{2} - 16 {\left\langle x - 2.0 \right\rangle}^{1} - 1.0 {\left\langle x - 4 \right\rangle}^{1} + 0.6 {\left\langle x - 4 \right\rangle}^{2} + 2.4 {\left\langle x - 6.5 \right\rangle}^{2} + 32.0 {\left\langle x - 9 \right\rangle}^{1}\]
\[\displaystyle {u_x}=\]
\[\displaystyle C_{ux} + \frac{C_{N} x - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - 15 {\left\langle x \right\rangle}^{1} + 27.0 {\left\langle x - 4 \right\rangle}^{1} + 1.8 {\left\langle x - 4 \right\rangle}^{2} - 1.8 {\left\langle x - 6.5 \right\rangle}^{2} - 74.0 {\left\langle x - 9 \right\rangle}^{1}}{EA}\]
\[\displaystyle {\phi}=\]
\[\displaystyle C_{\phi} + \frac{C_{M} x + \frac{C_{V} x^{2}}{2} + 0.4 R_{h} {\left\langle x - 14.0 \right\rangle}^{2} - 0.3 R_{v} {\left\langle x - 14.0 \right\rangle}^{2} - T_{R} {\left\langle x - 14.0 \right\rangle}^{1} - {\left\langle x \right\rangle}^{3} - 8 {\left\langle x - 2.0 \right\rangle}^{2} - 0.500000000000001 {\left\langle x - 4 \right\rangle}^{2} + 0.2 {\left\langle x - 4 \right\rangle}^{3} + 0.8 {\left\langle x - 6.5 \right\rangle}^{3} + 16.0 {\left\langle x - 9 \right\rangle}^{2}}{EI}\]
\[\displaystyle {u_z}=\]
\[\displaystyle - C_{\phi} x + C_{uz} - \frac{\frac{C_{M} x^{2}}{2} + \frac{C_{V} x^{3}}{6} + 0.133333333333333 R_{h} {\left\langle x - 14.0 \right\rangle}^{3} - 0.1 R_{v} {\left\langle x - 14.0 \right\rangle}^{3} - \frac{T_{R} {\left\langle x - 14.0 \right\rangle}^{2}}{2} - \frac{{\left\langle x \right\rangle}^{4}}{4} - \frac{8 {\left\langle x - 2.0 \right\rangle}^{3}}{3} - 0.166666666666667 {\left\langle x - 4 \right\rangle}^{3} + 0.05 {\left\langle x - 4 \right\rangle}^{4} + 0.2 {\left\langle x - 6.5 \right\rangle}^{4} + 5.33333333333333 {\left\langle x - 9 \right\rangle}^{3}}{EI}\]
\[\displaystyle {u_v}=\]
\[\displaystyle C_{uz} + \left(- C_{\phi} x - \frac{\frac{C_{M} x^{2}}{2} + \frac{C_{V} x^{3}}{6} + 0.133333333333333 R_{h} {\left\langle x - 14.0 \right\rangle}^{3} - 0.1 R_{v} {\left\langle x - 14.0 \right\rangle}^{3} - \frac{T_{R} {\left\langle x - 14.0 \right\rangle}^{2}}{2} - \frac{{\left\langle x \right\rangle}^{4}}{4} - \frac{8 {\left\langle x - 2.0 \right\rangle}^{3}}{3} - 0.166666666666667 {\left\langle x - 4 \right\rangle}^{3} + 0.05 {\left\langle x - 4 \right\rangle}^{4} + 0.2 {\left\langle x - 6.5 \right\rangle}^{4} + 5.33333333333333 {\left\langle x - 9 \right\rangle}^{3}}{EI}\right) {\left\langle x \right\rangle}^{0} - 0.6 \left(- \frac{4 C_{N} - 60.0}{EA} + \frac{C_{N} x - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - 15 {\left\langle x \right\rangle}^{1} + 27.0 {\left\langle x - 4 \right\rangle}^{1} + 1.8 {\left\langle x - 4 \right\rangle}^{2} - 1.8 {\left\langle x - 6.5 \right\rangle}^{2} - 74.0 {\left\langle x - 9 \right\rangle}^{1}}{EA}\right) {\left\langle x - 4 \right\rangle}^{0} + 1.4 \left(- \frac{9 C_{N} + 33.75}{EA} + \frac{C_{N} x - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - 15 {\left\langle x \right\rangle}^{1} + 27.0 {\left\langle x - 4 \right\rangle}^{1} + 1.8 {\left\langle x - 4 \right\rangle}^{2} - 1.8 {\left\langle x - 6.5 \right\rangle}^{2} - 74.0 {\left\langle x - 9 \right\rangle}^{1}}{EA}\right) {\left\langle x - 9 \right\rangle}^{0} - 0.8 \left(- \frac{14 C_{N} - 231.25}{EA} + \frac{C_{N} x - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - 15 {\left\langle x \right\rangle}^{1} + 27.0 {\left\langle x - 4 \right\rangle}^{1} + 1.8 {\left\langle x - 4 \right\rangle}^{2} - 1.8 {\left\langle x - 6.5 \right\rangle}^{2} - 74.0 {\left\langle x - 9 \right\rangle}^{1}}{EA}\right) {\left\langle x - 14 \right\rangle}^{0} - 0.2 \left(- C_{\phi} x + 4 C_{\phi} + \frac{8 C_{M} + \frac{32 C_{V}}{3} - 85.3333333333333}{EI} - \frac{\frac{C_{M} x^{2}}{2} + \frac{C_{V} x^{3}}{6} + 0.133333333333333 R_{h} {\left\langle x - 14.0 \right\rangle}^{3} - 0.1 R_{v} {\left\langle x - 14.0 \right\rangle}^{3} - \frac{T_{R} {\left\langle x - 14.0 \right\rangle}^{2}}{2} - \frac{{\left\langle x \right\rangle}^{4}}{4} - \frac{8 {\left\langle x - 2.0 \right\rangle}^{3}}{3} - 0.166666666666667 {\left\langle x - 4 \right\rangle}^{3} + 0.05 {\left\langle x - 4 \right\rangle}^{4} + 0.2 {\left\langle x - 6.5 \right\rangle}^{4} + 5.33333333333333 {\left\langle x - 9 \right\rangle}^{3}}{EI}\right) {\left\langle x - 4 \right\rangle}^{0} - 0.2 \left(- C_{\phi} x + 9 C_{\phi} + \frac{\frac{81 C_{M}}{2} + \frac{243 C_{V}}{2} - 2536.6875}{EI} - \frac{\frac{C_{M} x^{2}}{2} + \frac{C_{V} x^{3}}{6} + 0.133333333333333 R_{h} {\left\langle x - 14.0 \right\rangle}^{3} - 0.1 R_{v} {\left\langle x - 14.0 \right\rangle}^{3} - \frac{T_{R} {\left\langle x - 14.0 \right\rangle}^{2}}{2} - \frac{{\left\langle x \right\rangle}^{4}}{4} - \frac{8 {\left\langle x - 2.0 \right\rangle}^{3}}{3} - 0.166666666666667 {\left\langle x - 4 \right\rangle}^{3} + 0.05 {\left\langle x - 4 \right\rangle}^{4} + 0.2 {\left\langle x - 6.5 \right\rangle}^{4} + 5.33333333333333 {\left\langle x - 9 \right\rangle}^{3}}{EI}\right) {\left\langle x - 9 \right\rangle}^{0} - 0.6 \left(- C_{\phi} x + 14 C_{\phi} + \frac{98 C_{M} + \frac{1372 C_{V}}{3} - 12579.1875}{EI} - \frac{\frac{C_{M} x^{2}}{2} + \frac{C_{V} x^{3}}{6} + 0.133333333333333 R_{h} {\left\langle x - 14.0 \right\rangle}^{3} - 0.1 R_{v} {\left\langle x - 14.0 \right\rangle}^{3} - \frac{T_{R} {\left\langle x - 14.0 \right\rangle}^{2}}{2} - \frac{{\left\langle x \right\rangle}^{4}}{4} - \frac{8 {\left\langle x - 2.0 \right\rangle}^{3}}{3} - 0.166666666666667 {\left\langle x - 4 \right\rangle}^{3} + 0.05 {\left\langle x - 4 \right\rangle}^{4} + 0.2 {\left\langle x - 6.5 \right\rangle}^{4} + 5.33333333333333 {\left\langle x - 9 \right\rangle}^{3}}{EI}\right) {\left\langle x - 14 \right\rangle}^{0}\]
\[\displaystyle {u_h}=\]
\[\displaystyle C_{ux} - 0.2 \left(- \frac{4 C_{N} - 60.0}{EA} + \frac{C_{N} x - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - 15 {\left\langle x \right\rangle}^{1} + 27.0 {\left\langle x - 4 \right\rangle}^{1} + 1.8 {\left\langle x - 4 \right\rangle}^{2} - 1.8 {\left\langle x - 6.5 \right\rangle}^{2} - 74.0 {\left\langle x - 9 \right\rangle}^{1}}{EA}\right) {\left\langle x - 4 \right\rangle}^{0} - 0.2 \left(- \frac{9 C_{N} + 33.75}{EA} + \frac{C_{N} x - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - 15 {\left\langle x \right\rangle}^{1} + 27.0 {\left\langle x - 4 \right\rangle}^{1} + 1.8 {\left\langle x - 4 \right\rangle}^{2} - 1.8 {\left\langle x - 6.5 \right\rangle}^{2} - 74.0 {\left\langle x - 9 \right\rangle}^{1}}{EA}\right) {\left\langle x - 9 \right\rangle}^{0} - 0.6 \left(- \frac{14 C_{N} - 231.25}{EA} + \frac{C_{N} x - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - 15 {\left\langle x \right\rangle}^{1} + 27.0 {\left\langle x - 4 \right\rangle}^{1} + 1.8 {\left\langle x - 4 \right\rangle}^{2} - 1.8 {\left\langle x - 6.5 \right\rangle}^{2} - 74.0 {\left\langle x - 9 \right\rangle}^{1}}{EA}\right) {\left\langle x - 14 \right\rangle}^{0} + 0.6 \left(- C_{\phi} x + 4 C_{\phi} + \frac{8 C_{M} + \frac{32 C_{V}}{3} - 85.3333333333333}{EI} - \frac{\frac{C_{M} x^{2}}{2} + \frac{C_{V} x^{3}}{6} + 0.133333333333333 R_{h} {\left\langle x - 14.0 \right\rangle}^{3} - 0.1 R_{v} {\left\langle x - 14.0 \right\rangle}^{3} - \frac{T_{R} {\left\langle x - 14.0 \right\rangle}^{2}}{2} - \frac{{\left\langle x \right\rangle}^{4}}{4} - \frac{8 {\left\langle x - 2.0 \right\rangle}^{3}}{3} - 0.166666666666667 {\left\langle x - 4 \right\rangle}^{3} + 0.05 {\left\langle x - 4 \right\rangle}^{4} + 0.2 {\left\langle x - 6.5 \right\rangle}^{4} + 5.33333333333333 {\left\langle x - 9 \right\rangle}^{3}}{EI}\right) {\left\langle x - 4 \right\rangle}^{0} - 1.4 \left(- C_{\phi} x + 9 C_{\phi} + \frac{\frac{81 C_{M}}{2} + \frac{243 C_{V}}{2} - 2536.6875}{EI} - \frac{\frac{C_{M} x^{2}}{2} + \frac{C_{V} x^{3}}{6} + 0.133333333333333 R_{h} {\left\langle x - 14.0 \right\rangle}^{3} - 0.1 R_{v} {\left\langle x - 14.0 \right\rangle}^{3} - \frac{T_{R} {\left\langle x - 14.0 \right\rangle}^{2}}{2} - \frac{{\left\langle x \right\rangle}^{4}}{4} - \frac{8 {\left\langle x - 2.0 \right\rangle}^{3}}{3} - 0.166666666666667 {\left\langle x - 4 \right\rangle}^{3} + 0.05 {\left\langle x - 4 \right\rangle}^{4} + 0.2 {\left\langle x - 6.5 \right\rangle}^{4} + 5.33333333333333 {\left\langle x - 9 \right\rangle}^{3}}{EI}\right) {\left\langle x - 9 \right\rangle}^{0} + 0.8 \left(- C_{\phi} x + 14 C_{\phi} + \frac{98 C_{M} + \frac{1372 C_{V}}{3} - 12579.1875}{EI} - \frac{\frac{C_{M} x^{2}}{2} + \frac{C_{V} x^{3}}{6} + 0.133333333333333 R_{h} {\left\langle x - 14.0 \right\rangle}^{3} - 0.1 R_{v} {\left\langle x - 14.0 \right\rangle}^{3} - \frac{T_{R} {\left\langle x - 14.0 \right\rangle}^{2}}{2} - \frac{{\left\langle x \right\rangle}^{4}}{4} - \frac{8 {\left\langle x - 2.0 \right\rangle}^{3}}{3} - 0.166666666666667 {\left\langle x - 4 \right\rangle}^{3} + 0.05 {\left\langle x - 4 \right\rangle}^{4} + 0.2 {\left\langle x - 6.5 \right\rangle}^{4} + 5.33333333333333 {\left\langle x - 9 \right\rangle}^{3}}{EI}\right) {\left\langle x - 14 \right\rangle}^{0} + \frac{\left(C_{N} x - 0.6 R_{h} {\left\langle x - 14.0 \right\rangle}^{1} - 0.8 R_{v} {\left\langle x - 14.0 \right\rangle}^{1} - 15 {\left\langle x \right\rangle}^{1} + 27.0 {\left\langle x - 4 \right\rangle}^{1} + 1.8 {\left\langle x - 4 \right\rangle}^{2} - 1.8 {\left\langle x - 6.5 \right\rangle}^{2} - 74.0 {\left\langle x - 9 \right\rangle}^{1}\right) {\left\langle x \right\rangle}^{0}}{EA}\]
# 3 reactiekrachten + 6 integratieconstanten = 9 voorwaarden
Eq1 = sym.Eq(N.subs(x,0-dx),0)
Eq2 = sym.Eq(N.subs(x,L+dx),0)
Eq3 = sym.Eq(V.subs(x,0-dx),0)
Eq4 = sym.Eq(V.subs(x,L+dx),0)
Eq5 = sym.Eq(M.subs(x,0),0)
Eq6 = sym.Eq(M.subs(x,L+dx),0)
Eq7 = sym.Eq(phi.subs(x,L),0)
Eq8 = sym.Eq(uv.subs(x,L),0)
Eq9 = sym.Eq(uh.subs(x,L),0)
sol = sym.solve((Eq1,Eq2,Eq3,Eq4,Eq5,Eq6,Eq7,Eq8,Eq9),(Rv,Rh,Tr,CN,CV,CM,Cphi,Cuz,Cux))
display(sol)
{C_M: 0.0,
C_N: 0.0,
C_V: 0.0,
C_phi: 3008.5/EI,
C_ux: 0.0625*(56875.0*EA + 2304.0*EI)/(EA*EI),
C_uz: 0.0833333333333333*(300259.0*EA + 3219.0*EI)/(EA*EI),
R_h: -15.0000000000000,
R_v: -55.0000000000000,
T_R: -435.000000000000}
ea = 10**4
ei = 3 * 10**4
display(f'{Rv} = {Rv.subs(sol).subs(EI,ei).subs(EA,ea):.2f}')
display(f'{Rh} = {Rh.subs(sol).subs(EI,ei).subs(EA,ea):.2f}')
display(f'{Tr} = {Tr.subs(sol).subs(EI,ei).subs(EA,ea):.2f}')
display(f'{CN} = {CN.subs(sol).subs(EI,ei).subs(EA,ea):.2f}')
display(f'{CV} = {CV.subs(sol).subs(EI,ei).subs(EA,ea):.2f}')
display(f'{CM} = {CM.subs(sol).subs(EI,ei).subs(EA,ea):.2f}')
display(f'{Cphi} = {Cphi.subs(sol).subs(EI,ei).subs(EA,ea):.4f}')
display(f'{Cux} = {Cux.subs(sol).subs(EI,ei).subs(EA,ea):.4f}')
display(f'{Cuz} = {Cuz.subs(sol).subs(EI,ei).subs(EA,ea):.4f}')
'R_v = -55.00'
'R_h = -15.00'
'T_R = -435.00'
'C_N = 0.00'
'C_V = 0.00'
'C_M = 0.00'
'C_phi = 0.1003'
'C_ux = 0.1329'
'C_uz = 0.8609'
v = 0
h = 0
for i in range(len(oo)):
v += -(sym.SingularityFunction(x,aa[i],1) - sym.SingularityFunction(x,aa[i+1],1)) * sym.sin(oo[i])
h += (sym.SingularityFunction(x,aa[i],1) - sym.SingularityFunction(x,aa[i+1],1)) * sym.cos(oo[i])
x_np = np.linspace(0-dx,L+dx,10000)
N_np = sym.lambdify(x, N.subs(sol).rewrite(sym.Piecewise))
display(N.subs(sol))
display(f'N(0) = {N.subs(x,0).subs(sol)}')
display(f'N(4+) = {N.subs(x,4).subs(sol)}')
display(f'N(9-) = {N.subs(x,9-dx).subs(sol)}')
display(f'N(9+) = {N.subs(x,9).subs(sol)}')
plt.figure()
plt.plot(x_np,N_np(x_np))
plt.xlabel('$x$')
plt.ylabel('$N$');
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['left'].set_position('zero')
ax.invert_yaxis()
\[\displaystyle - 15 {\left\langle x \right\rangle}^{0} + 27.0 {\left\langle x - 4 \right\rangle}^{0} + 3.6 {\left\langle x - 4 \right\rangle}^{1} - 3.6 {\left\langle x - 6.5 \right\rangle}^{1} - 74.0 {\left\langle x - 9 \right\rangle}^{0} + 53.0 {\left\langle x - 14.0 \right\rangle}^{0}\]
'N(0) = -15.0000000000000'
'N(4+) = 12.0000000000000'
'N(9-) = 21.0000000000000'
'N(9+) = -53.0000000000000'
V_np = sym.lambdify(x, V.subs(sol).rewrite(sym.Piecewise))
display(V.subs(sol))
display(f'V(2-) = {V.subs(x,b2-dx).subs(sol)}')
display(f'V(2+) = {V.subs(x,b2).subs(sol)}')
display(f'V(4-) = {V.subs(x,a1-dx).subs(sol)}')
display(f'V(4+) = {V.subs(x,a1).subs(sol)}')
display(f'V(9-) = {V.subs(x,a2-dx).subs(sol)}')
display(f'V(9+) = {V.subs(x,a2).subs(sol)}')
plt.figure()
plt.plot(x_np,V_np(x_np))
plt.xlabel('$x$')
plt.ylabel('$V$');
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['left'].set_position('zero')
ax.invert_yaxis()
\[\displaystyle - 6 {\left\langle x \right\rangle}^{1} - 16 {\left\langle x - 2.0 \right\rangle}^{0} - 1.0 {\left\langle x - 4 \right\rangle}^{0} + 1.2 {\left\langle x - 4 \right\rangle}^{1} + 4.8 {\left\langle x - 6.5 \right\rangle}^{1} + 32.0 {\left\langle x - 9 \right\rangle}^{0} + 435.0 {\left\langle x - 14.0 \right\rangle}^{-1} + 21.0 {\left\langle x - 14.0 \right\rangle}^{0}\]
'V(2-) = -12.0000000000000'
'V(2+) = -28.0000000000000'
'V(4-) = -40.0000000000000'
'V(4+) = -41.0000000000000'
'V(9-) = -53.0000000000000'
'V(9+) = -21.0000000000000'
M_np = sym.lambdify(x, M.subs(sol).rewrite(sym.Piecewise))
display(M.subs(sol))
display(f'M(4) = {M.subs(x,4).subs(sol)}')
display(f'M(9) = {M.subs(x,9).subs(sol)}')
display(f'M(14) = {M.subs(x,14-dx).subs(sol)}')
plt.figure()
plt.plot(x_np,M_np(x_np))
plt.xlabel('$x$')
plt.ylabel('$M$');
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['left'].set_position('zero')
ax.invert_yaxis()
\[\displaystyle - 3 {\left\langle x \right\rangle}^{2} - 16 {\left\langle x - 2.0 \right\rangle}^{1} - 1.0 {\left\langle x - 4 \right\rangle}^{1} + 0.6 {\left\langle x - 4 \right\rangle}^{2} + 2.4 {\left\langle x - 6.5 \right\rangle}^{2} + 32.0 {\left\langle x - 9 \right\rangle}^{1} + 435.0 {\left\langle x - 14.0 \right\rangle}^{0} + 21.0 {\left\langle x - 14.0 \right\rangle}^{1}\]
'M(4) = -80.0000000000000'
'M(9) = -330.000000000000'
'M(14) = -435.000000000000'
v_np = sym.lambdify(x, v.rewrite(sym.Piecewise))
h_np = sym.lambdify(x, h.rewrite(sym.Piecewise))
uv_np = sym.lambdify(x, uv.subs(sol).subs(EI,3*10**4).subs(EA,10**4).rewrite(sym.Piecewise))
uh_np = sym.lambdify(x, uh.subs(sol).subs(EI,3*10**4).subs(EA,10**4).rewrite(sym.Piecewise))
#display(uv.subs(sol))
display(f'uv(0) = {uv.subs(x,0).subs(sol).subs(EI,3*10**4).subs(EA,10**4):.4f}')
display(f'uv(4) = {uv.subs(x,4).subs(sol).subs(EI,3*10**4).subs(EA,10**4):.4f}')
display(f'uv(9) = {uv.subs(x,9).subs(sol).subs(EI,3*10**4).subs(EA,10**4):.4f}')
#display(uh.subs(sol))
display(f'uh(0) = {uh.subs(x,0).subs(sol).subs(EI,3*10**4).subs(EA,10**4):.4f}')
display(f'uh(4) = {uh.subs(x,4).subs(sol).subs(EI,3*10**4).subs(EA,10**4):.4f}')
display(f'uh(9) = {uh.subs(x,9).subs(sol).subs(EI,3*10**4).subs(EA,10**4):.4f}')
plt.figure()
plt.plot(h_np(x_np),v_np(x_np), linewidth=2, color='black', label='constructie')
plt.plot((h_np(x_np)+uh_np(x_np)),(v_np(x_np)+uv_np(x_np)), label='vervormde constructie')
plt.xlabel('$h$')
plt.ylabel('$v$');
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['left'].set_position('zero')
ax.invert_yaxis()
plt.axis('scaled')
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),fancybox=True, shadow=False, ncol=3);
'uv(0) = 0.8609'
'uv(4) = 0.4626'
'uv(9) = 0.1212'
'uh(0) = 0.1329'
'uh(4) = 0.1269'
'uh(9) = -0.1174'