8.7. Castellated beams#

Introduction#

../../_images/castellated_beams_2.png

Fig. 8.20 Castellated beams detail.#

Castellated beams are made by cutting standard hot rolled sections lengthwise along a ‘toothed’ line. After cutting, both parts are shifted with respect to each other, placing the ‘teeth’ upon each other. The two halves are welded together. Between the welded connections the characteristic hexagonal holes appear. The increased height is very beneficial for the stiffness of the beam. The bending strength is not increased very much. The shear capacity of the castellated beam is relatively low. If necessary, the hexagonal hole nearest to the supports can be filled up with a plate to locally increase the shear capacity. For these reasons castellated beams are very suitable for long spans with relatively low loads. To prevent local buckling of the web (if necessary, and where needed) local stiffeners can be added 1.

Possible shapes#

../../_images/castellated_possible_shapes_1.png

Fig. 8.21 Left: standard castellated beam (edges will be trimmed later); middle: beams with variable height are also possible; right: curved castellated beams#

../../_images/castellated_possible_shapes_2.png

Fig. 8.22 Left: cellular beams; Right production of cellular beams will cause some material loss#

Production method#

Production method 1#

../../_images/castellated_production_method_1.png

Fig. 8.23 Left: cutting of the profile; middle: shifting of the two halves; right: welding of the new section#

Production method 2#

../../_images/castellated_production_method_2.png

Fig. 8.24 Left: cutting of the profile; middle: adding plates between the two halves; right: welding together the two halves and plates#

Application examples#

../../_images/castellated_application_1.png

Fig. 8.25 Left: NS station Amsterdam RAI; right: castellated beams are used as facade support#

../../_images/castellated_application_2.png

Fig. 8.26 Left: Transeuro Nijman, Rotterdam, with bracing in the facade; right: cross section of the building#

Castellated beams, section tables#

Castellated beams based on IPE 180, IPE 240, IPE 300, IPE 360#

The tables depicted below are a selection of the available sections 1.

../../_images/castellated_section_profile.png

Fig. 8.27 Castellated section profile#

Based on IPE180#

Table 8.10 IPE180 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

180*

19.2

90

0

0

24

1317

146

83

24

1317

146

83

240

19.2

59.9

120.2

0

27

2543

212

122

21

2466

205

112

270

19.2

45

180

0

29

3332

247

142

19

3074

228

121

300

19.2

30

240.1

0

30

4254

284

165

18

3643

243

126

370

20.6

45

280

100

34

6943

375

221

19

5973

323

169

420

21.3

45

330

150

37

9370

446

265

19

7783

371

193

Properties IPE180

\(h = 180 \ mm\)
\(b = 91 \ mm\)
\(d = 5.3 \ mm\)
\(I_z = 101 \cdot 10^4 \ mm^4\)
\(t = 8 \ mm\)
\(r = 9 \ mm\)
\(W_z = 22 \cdot 10^3 \ mm^3\)

Based on IPE240#

Table 8.11 IPE140 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

240*

31.3

120

0

0

39

3892

324

183

39

3892

324

183

300

31.3

90

120

0

43

6455

430

245

35

6366

424

234

360

31.3

60

240

0

47

9789

544

312

32

9075

504

267

400

31.3

40

320.2

0

49

12479

624

360

29

10783

539

280

460

33

60

340

100

53

17241

750

436

32

15210

661

346

510

33.8

60

390

150

56

21937

860

504

32

18872

740

386

Properties IPE240

\(h = 240 \ mm\)
\(b = 120 \ mm\)
\(d = 6.2 \ mm\)
\(I_z = 284 \cdot 10^4 \ mm^4\)
\(t = 9.8 \ mm\)
\(r = 15 \ mm\)
\(W_z = 47 \cdot 10^3 \ mm^3\)

Based on IPE300#

Table 8.12 IPE300 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

300*

43

150

0

0

54

8356

557

314

54

8356

557

314

375

43

112.5

150

0

59

13850

739

420

48

13650

728

400

450

43

75

300

0

64

21008

934

536

43

19411

863

456

500

43

50

400.2

0

68

26790

1071

619

40

22998

920

477

550

44.9

75

400

100

72

33398

1214

706

43

29611

1077

564

600

45.8

75

450

150

75

40912

1364

798

43

35520

1184

618

Properties IPE300

\(h = 300 \ mm\)
\(b = 150 \ mm\)
\(d = 7.1 \ mm\)
\(I_z = 603 \cdot 10^4 \ mm^4\)
\(t = 10.7 \ mm\)
\(r = 15 \ mm\)
\(W_z = 80 \cdot 10^3 \ mm^3\)

Based on IPE360#

Table 8.13 IPE360 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

360*

58.2

180

0

0

73

16266

904

510

73

16266

904

510

480

58.2

119.9

240.5

0

82

31265

1302

743

63

30338

1263

685

540

58.2

90

360

0

87

40890

1514

869

58

37780

1399

740

640

60.3

90

460

100

95

60520

1891

1097

58

54031

1688

885

690

61.4

90

510

150

99

72094

2090

1218

58

63251

1833

958

740

62.5

90

560

200

103

84907

2295

1345

58

73199

1978

1031

Properties IPE360

\(h = 360 \ mm\)
\(b = 170 \ mm\)
\(d = 8 \ mm\)
\(I_z = 1042 \cdot 10^4 \ mm^4\)
\(t = 12.7 \ mm\)
\(r = 18 \ mm\)
\(W_z = 123 \cdot 10^3 \ mm^3\)

Castellated beams based on HEA 180, HEA 240, HEA 300, HEA 360, HEA 400#

The tables depicted below are a selection of the available sections 1.

../../_images/castellated_section_profile.png

Fig. 8.28 Castellated section profile#

Based on HEA180#

Table 8.14 HEA180 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

171*

36.2

85.5

0

0

45

2510

294

162

45

2510

294

162

215

36.2

63.4

88.2

0

48

4168

388

214

43

4134

384

208

257

36.2

42.8

171

0

50

6146

479

265

40

5896

460

243

285

36.2

28.5

228.1

0

52

7761

545

301

38

7167

503

262

357

37.8

42.8

271

100

56

12748

715

398

40

11753

659

343

407

38.6

42.8

321

150

59

17088

841

470

40

15434

759

393

Properties HEA180

\(h = 171 \ mm\)
\(b = 180 \ mm\)
\(d = 6 \ mm\)
\(I_z = 925 \cdot 10^4 \ mm^4\)
\(t = 9.5 \ mm\)
\(r = 15 \ mm\)
\(W_z = 103 \cdot 10^3 \ mm^3\)

Based on HEA240#

Table 8.15 HEA240 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

230*

61.5

115

0

0

77

7763

675

372

77

7763

675

372

290

61.5

85

120.1

0

81

12939

892

491

72

12831

885

477

345

61.5

57.5

230

0

85

18962

1099

606

68

18202

1055

556

385

61.5

37.5

310

0

88

24155

1255

693

65

22292

1158

603

445

63.5

57.5

330

100

93

33273

1495

829

68

31027

1394

727

495

64.5

57.5

380

150

97

42148

1703

947

68

38719

1564

812

Properties HEA240

\(h = 230 \ mm\)
\(b = 240 \ mm\)
\(d = 7.5 \ mm\)
\(I_z = 2770 \cdot 10^4 \ mm^4\)
\(t = 12 \ mm\)
\(r = 21 \ mm\)
\(W_z = 231 \cdot 10^3 \ mm^3\)

Based on HEA300#

Table 8.16 HEA300 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

310*

99.5

155

0

0

124

22929

1479

814

124

22929

1479

814

390

99.5

114.9

160.6

0

132

38044

1950

1071

117

37733

1934

1042

465

99.5

77.5

310

0

138

55913

2405

1323

110

53679

2309

1215

520

99.5

49.9

420.4

0

143

71579

2752

1517

105

66008

2538

1318

565

101.9

77.5

410

100

147

85906

3041

1680

110

80737

2858

1491

615

103.1

77.5

460

150

152

103637

3370

1867

110

96337

3133

1629

Properties HEA300

\(h = 310 \ mm\)
\(b = 300 \ mm\)
\(d = 9 \ mm\)
\(I_z = 6988 \cdot 10^4 \ mm^4\)
\(t = 15.5 \ mm\)
\(r = 27 \ mm\)
\(W_z = 466 \cdot 10^3 \ mm^3\)

Based on HEA360#

Table 8.17 HEA360 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

350*

114.2

175

0

0

143

33090

1891

1044

143

33090

1891

1044

440

114.2

129.8

180.6

0

152

54920

2495

1377

134

54429

2472

1336

525

114.2

87.5

350

0

160

81015

3086

1707

125

77442

2950

1554

585

114.2

57.4

470.4

0

166

103038

3521

1953

119

94364

3225

1676

625

116.9

87.5

450

100

170

119246

3816

2120

125

111652

3573

1867

675

118.2

87.5

500

150

175

141523

4193

2336

125

131106

3885

2024

Properties HEA360

\(h = 350 \ mm\)
\(b = 300 \ mm\)
\(d = 10 \ mm\)
\(I_z = 7889 \cdot 10^4 \ mm^4\)
\(t = 17.5 \ mm\)
\(r = 27 \ mm\)
\(W_z = 526 \cdot 10^3 \ mm^3\)

Based on HEA400#

Table 8.18 HEA400 Steel properties.#

\(h \ [mm]\)

\(G \ [kg/m]\)

\(h_1 \ [mm]\)

\(h_2 \ [mm]\)

\(h_3 \ [mm]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_y \cdot 10^4 \ [mm^4]\)

\(W_y \cdot 10^3 \ [mm^3]\)

\(S_y \cdot 10^3 \ [mm^3]\)

\(A_s \cdot 10^2 \ [mm^2]\)

\(I_z [mm^4]\)

\(W_z \cdot 10^3 [mm^3]\)

\(S_z \cdot 10^3 [mm^3]\)

440*

142.4

220

0

0

178

63722

2896

1608

178

63722

2896

1608

550

142.4

165

220

0

191

104609

3804

2115

165

103589

3767

2045

660

142.4

110

440

0

203

157032

4759

2657

153

148869

4511

2378

735

142.4

72.4

590.5

0

212

199928

5438

3047

144

180198

4902

2546

760

145.5

110

540

100

215

215345

5667

3179

153

200255

5270

2760

810

147

110

590

150

221

248493

6136

3451

153

228811

5650

2951

Properties HEA400

\(h = 390 \ mm\)
\(b = 300 \ mm\)
\(d = 11 \ mm\)
\(I_z = 8566 \cdot 10^4 \ mm^4\)
\(t = 19 \ mm\)
\(r = 27 \ mm\)
\(W_z = 8561 \cdot 10^3 \ mm^3\)


1(1,2,3)

Grunbauer: The information on integrated beams has been put together in cooperation with Grunbauer B.V. and Bouwen met Staal.