9.1. Material characteristics timber#

This section contains tables with the material properties of the different timber strength classes. With the aid of a modification factor the characteristic values are adapted to the local environment and use.

Durability class#

The upper table below can be used to judge whether wood species belonging to a particular durability class (D1-D5) is sufficiently durable or needs extra protection. The durability class of different wood species is depicted in the lower table below. The higher the durability class, the less durable a wood species 1.

Table 9.1 Durability classes timber.#

Use class

D1

D2

D3

D4

D5

1

O

O

O

O

O

2

O

O

O

(O)

(O)

3

O

O

(O)

(O)-(X)

(O)-(X)

4

O

(O)

(X)

X

X

5

O

X

(X)

X

X

O: Natural durability is sufficient
(O): Natural durability in principle sufficient but some circumstances require wood treatment
(O)-(X): Natural durability can be sufficient
(X): Chemical treatment is advisable but for some applications the natural durability can suffice
X: Chemical treatment is necessary

Table 9.2 Durabilities per specimen.#

Species

Natural durability

Spruce

D4

Pine

D3-D4

Oak (European)

D2

Oak (American)

D4

Larch

D3-D4

Azobe

D2

Robinia

D1-D2

Western Red Cedar

D2-D3

Use class#

Table 9.3 Use classes for timber.#

Class

Description

Example

1

Situations in which the wood or wood-based product is inside a construction, not exposed to the weather and wetting.

roof beam

2

Situations in which the wood or wood-based product is under cover and not exposed to the weather (particularly rain and driven rain) but where occasional, but not persistent, wetting can occur.

beam of open canopy

3

Situations in which the wood or wood-based product is above ground and exposed to the weather (particularly rain).

external column

4

A situation in which the wood or wood-based product is in direct contact with ground and/or fresh water.

foundation pile

5

A situation in which the wood or wood-based product is permanently or regularly submerged in salt water (i.e. sea water and brackish water).

sea lock gate

Service classes#

Table 9.4 Service classes for timber.#

Service class

Environment

R.H. in construction

Use class

1

Relative humidity exceeding 65% only a few weeks per year. Temperature 20°C

12% R.H.

1

2

Relative humidity exceeding 85% only a few weeks per year. Temperature 20°C

20% R.H.

1

2

If the component is in a situation where it could be subjected to prolonged wetting by liquid water e.g. condensation

20% R.H.

2

3

Climatic conditions leading to higher moisture contents than in service class 2

> 20% R.H.

3 or higher if used externally

Note

The relative humidity of in the material given in this column holds for most softwoods.

Load duration class#

Table 9.5 Load duration class for timber.#

Load duration class

Order of load duration

Example

Permanent

More than 10 years

Self weight

Long-term

6 months to 10 years

Storage

Medium-term

1 week to 6 months

Imposed floor load, snow

Short-term

Less than 1 week

Snow, wind

Instantaneous

-

Wind, accidental load

Modification factors \(k_{mod}\)#

Table 9.6 Modification factors for timber.#

Material

Service class

Permanent

Long-term

Medium-term

Short-term

Instantaneous

Solid Timber and Glued Laminated Timber

1

0.60

0.70

0.80

0.90

1.10

Solid Timber and Glued Laminated Timber

2

0.60

0.70

0.80

0.90

1.10

Solid Timber and Glued Laminated Timber

3

0.50

0.55

0.65

0.70

0.90

Note

Note that the modification factor needs to be chosen according to the load duration of the whole load combination.

Creep factors \(k_{def}\)#

The creep factor is based on the service class.

Table 9.7 Creep factor for timber.#

Material

1

2

3

Solid Timber and Glued Laminated Timber

0.60

0.80

2.00

Material properties: solid timber#

Table 9.8 Material properties for solid timber.#

Material property

C14

C16

C18

C20

C22

C24

C27

C30

C35

Bending \(f_{m;k}\) (N/mm²)

14

16

18

20

22

24

27

30

35

Tension \(f_{t;0;k}\) // (N/mm²)

8

10

11

12

13

14

16

18

21

Tension \(f_{t;90;k}\) ┴ (N/mm²)

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

Compression \(f_{c;0;k}\) // (N/mm²)

16

17

18

19

20

21

22

23

25

Compression \(f_{c;90;k}\) ┴ (N/mm²)

2.0

2.2

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Shear \(f_{v;k}\) (N/mm²)

3.0

3.2

3.4

3.6

3.8

4.0

4.0

4.0

4.0

Mean MOE \(E_{0;\text{mean}}\) (N/mm²)

7000

8000

9000

9500

10000

11000

11500

12000

13000

5% MOE \(E_{0,05}\) (N/mm²)

4700

5400

6000

6400

6.7

7400

7700

8000

8700

Mean MOE \(E_{90;\text{mean}}\) (N/mm²)

230

270

300

320

0.33

370

380

400

430

Mean shear modulus \(G_{\text{mean}}\) (N/mm²)

440

500

560

590

630

690

720

750

810

Density \(\rho_k\) (kg/m³)

290

310

320

330

340

350

370

380

400

Mean density \(\rho_{\text{mean}}\) (kg/m³)

350

370

380

390

410

420

450

460

480

Note

  1. MOE = modulus of elasticity or Young’s modulus.

  2. Timber in strength classes C40 and C45 may not be readily available

Material properties: glued laminated timber#

Table 9.9 Material properties for glued laminated timber.#

Material property

GL24h

GL28h

GL32h

Bending \(f_{m;k}\) (N/mm²)

24

28

32

Tension \(f_{t;0;k}\) // (N/mm²)

16.5

19.5

22.5

Tension \(f_{t;90;k}\) ┴ (N/mm²)

0.4

0.45

0.5

Compression \(f_{c;0;k}\) // (N/mm²)

24

26.5

29

Compression \(f_{c;90;k}\) ┴ (N/mm²)

2.7

3.0

3.3

Shear \(f_{v;k}\) (N/mm²)

2.7

3.2

3.8

Mean MOE \(E_{0;\text{mean}}\) (N/mm²)

11600

12600

13700

5% MOE \(E_{0,05}\) (N/mm²)

9400

10200

11100

Mean MOE \(E_{90;\text{mean}}\) (N/mm²)

390

420

460

Mean shear modulus \(G_{\text{mean}}\) (N/mm²)

720

780

850

Density \(\rho_k\) (kg/m³)

380

410

430

Mean density \(\rho_{\text{mean}}\) (kg/m³)

420

450

470

Material properties continued: solid timber#

Table 9.10 Material properties for solid timber.#

C40

C45

C50

D18

D24

D30

D35

D40

D50

D60

D70

\(f_{m;k}\)

40

45

50

18

24

30

35

40

50

60

70

\(f_{t;0;k}\) //

24

27

30

11

14

18

21

24

30

36

42

\(f_{t;90;k}\)

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

\(f_{c;0;k}\) //

26

27

29

18

21

23

25

26

29

32

34

\(f_{c;90;k}\)

2.9

3.1

3.2

7.5

7.8

8.0

8.1

8.3

9.3

10.5

13.5

\(f_{v;k}\)

4.0

4.0

4.0

3.4

4.0

4.0

4.0

4.0

4.0

4.5

5.0

\(E_{0;\text{mean}}\)

14000

15000

16000

9500

10000

11000

12000

13000

14000

17000

20000

\(E_{0,05}\)

9400

10000

10700

8000

8500

9200

10100

10900

11800

14300

16800

\(E_{90;\text{mean}}\)

470

500

530

630

670

730

800

860

930

1130

1330

\(G_{\text{mean}}\)

880

940

1000

590

620

690

750

810

880

1060

1250

\(\rho_k\)

420

440

460

475

485

530

540

550

620

700

900

\(\rho_{\text{mean}}\)

500

520

550

570

580

640

650

660

750

840

1080

Design values of material properties in ULS#

The material properties given in the tables above are characteristic values. Depending on the local environment, use and load duration these values have to be adjusted to design values. The design value of the Young’s modulus is used to determine the force distribution in a statically indeterminate structure.

Strength properties:

\[\begin{gather*} X_d = k_{mod} \cdot \frac{X_k}{\gamma_M} \end{gather*}\]

Stiffness properties:

\[\begin{gather*} E_d = \frac{E_{mean}}{\gamma_M} G_d = \frac{G_{mean}}{\gamma_M} \end{gather*}\]

Where:
\(X_d\) = Design value of strength property
\(X_k\) = Characteristic value of strength property
\(E_d\) = Design value of Young’s modulus
\(E_{mean}\) = Characteristic value of Young’s modulus
\(k_{mod}\) = modification factor
\(\gamma_M\) = model factor; 1,25 for glued laminated timber, 1,3 for solid timber and connections

Final deflection#

The final deflection in SLS including creep effects is defined as:

\[\begin{gather*} u_{fin} = u_{fin;G} + u_{fin;Q;1} + \Sigma u_{fin;Q;i}\\ u_{fin;G} = u_{inst;G} \cdot (1 + k_{def})\\ u_{fin;Q;1} = u_{inst;Q;1} \cdot (1 + \psi_{2,1} \cdot k_{def})\\ u_{fin;Q;i} = u_{inst;Q;i} \cdot (\psi_0 + \psi_{2,i} \cdot k_{def}) \end{gather*}\]

Where:
\(u_{fin}\) = final deflection
\(u_{inst}\) = instantaneous deflection
\(u_G\) = deflection under permanent load
\(u_{Q;1}\) = deflection under leading variable load
\(u_{Q;i}\) = deflection under other variable load
\(\Psi_0\) = load combination factor (see also general loads)
\(\Psi_2\) = factor for quasi permanent value of variable load i
\(k_{def}\) = creep factor


1

houtdatabase.nl durability properties of timber species