3.2. Cross sectional quantitites#
Definition section parameters#
Surface |
Static moment of area |
Moment of Inertia |
Polar moment of inertia |
Steiner’s rule |
---|---|---|---|---|
\(A=\int_A\,dA\) |
\(S_y = \int_A y\, dA\) |
\(I_{yy}=I_z=\int_A y^2\,dA\) |
\(I_p = \int_A r^2\, dA = I_{yy} + I_{zz}\) |
\(I_{\overline{yy}}=I_{yy(own)}+\bar{y}_c^2 \cdot A\) |
\(S_z = \int_A z\, dA\) |
\(I_{yz}=I_{zy}=\int_A y*z\,dA\) |
\(I_{\overline{yz}}=I_{\overline{zy}}=I_{yz(own)}+\bar{y}_c \cdot \bar{z}_c \ A\) |
||
\(I_{zz}=I_{y}=\int_A z^2\,dA\) |
\(I_{\overline{zz}}=I_{zz(own)}+\bar{z}_c^2 \cdot A\) |
Section parameters#
Square#

Fig. 3.1 Cross-section of a rectangular shape.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=bh\) |
\(I_{yy}=\frac{1}{12}*b^3*h\) |
\(I_{\overline{yy}}=1/3b^3h\) |
\(\bar{y}_C=\frac{1}{2}b\) |
\(I_{zz}=\frac{1}{12}bh^3\) |
\(I_{\overline{zz}}=\frac{1}{3}bh^3\) |
\(\bar{z}_C=\frac{1}{2}b\) |
\(I_{yz}=\frac{1}{12}bh^3\) |
\(I_{\overline{yz}}=\frac{1}{4}b^2h^2\) |
Parallelogram#

Fig. 3.2 Cross-section of a parallelogram shape.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=bh\) |
\(I_{yy}=\frac{1}{12}(a^2+b^2)\) |
\(I_{\overline{yy}}=1/3bh^3\) |
\(\bar{y}_C=\frac{1}{2}(a+b)\) |
\(I_{zz}=\frac{1}{12}bh^3\) |
|
\(\bar{z_C}=\frac{1}{2}h\) |
\(I_{yz}=\frac{1}{12}abh^2\) |
Triangle#

Fig. 3.3 Cross-section of a triangle shape.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=\frac{1}{2}bh\) |
\(I_{yy}=\frac{1}{36}*(a^2-ab+b^2)\) |
\(I_{\overline{zz}}=\frac{1}{3}bh^3\) |
\(\bar{y}_C=\frac{1}{3}(2a-b)\) |
\(I_{zz}=\frac{1}{36}bh^3\) |
\(I_{\overline{yz}}=\frac{1}{8}(2a-b)bh^2\) |
\(\bar{z}_C=\frac{2}{3}h\) |
\(I_{yz}=\frac{1}{72}abh^2\) |
\(I_{\overline{\overline{zz}}}=\frac{1}{12}bh^3\) |
Trapezoid#

Fig. 3.4 Cross-section of a trapezoid shape.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=\frac{1}{2}(a+b)h\) |
\(I_{zz}=\frac{1}{36}\frac{a^2+4ab+b^2}{a+b}h^3\) |
\(I_{\overline{zz}}=\frac{1}{3}bh^3\) |
\(\bar{y}_C=\frac{1}{3}\frac{a+2b}{a+b}h\) |
\(I_{\overline{\overline{zz}}}=\frac{1}{12}(a+3b)h^3\) |
|
\(\bar{z}_C=\frac{2}{3}h\) |
Circle#

Fig. 3.5 Cross-section of a circle shape.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=πR^2\) |
\(I_{yy}=I_{zz}=\frac{1}{4}R^4\) |
\(I_{\overline{yy}}=I_{\overline{zz}}=\frac{5}{4}πR^4\) |
\(I_{yz}=0\) |
\(I_{\overline{\overline{yz}}}=πR^4\) |
|
\(I_p=\frac{1}{2}πR^4\) |
Thick-walled ring#

Fig. 3.6 Cross-section of a thick walled ring.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=πR_0^2R_i^2\) |
\(I_{yy}=I_{zz}=\frac{1}{4}π(R_0^4-R_i^4)\) |
|
\(I_{yz}=0\) |
||
\(I_p=\frac{1}{2}π(R_0^4-R_i^4)\) |
Thin-walled ring#

Fig. 3.7 Cross-section of thin walled ring shape.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=2πRt\) |
\(I_{yy}=I_{zz}=πR^3t\) |
\(I_{\overline{yy}}=I_{\overline{zz}}=3πR^3t\) |
\(I_{yz}=0\) |
||
\(I_p=\frac{1}{2}πR^3t\) |
Half circle#

Fig. 3.8 Cross-section of a half circle shape.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=\frac{1}{2}πR^2\) |
\(I_{yy}=\frac{1}{8}πR^4\) |
\(I_{\overline{yy}}=I_{\overline{zz}}=\frac{1}{8}πR^4\) |
\(\bar{y}_C=0\) |
\(I_{zz}=(\frac{π}{8}-\frac{8}{9π})R^4\) |
\(I_{\overline{\overline{yz}}}=0\) |
\(\bar{z}_C=\frac{4}{3π}R\) |
\(I_{yz}=0\) |
Half thin-walled ring#

Fig. 3.9 Cross-sectoin of half thin-walled ring.#
Area, centre of gravity |
Moments of intertia own |
other |
---|---|---|
\(A=πRt\) |
\(I_{yy}=I_{zz}=\frac{1}{2}R^3t\) |
\(I_{\overline{yy}}=I_{\overline{zz}}=\frac{1}{2}πR^3t\) |
\(\bar{y}_C=0\) |
\(I_{zz}=0\) |
\(I_{\overline{yz}}=0\) |
\(\bar{z}_C=0\) |
\(I_{yz}=0\) |
Centre of gravity for moment diagrams#



